Abrin L. Schmucker

Learn More
Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also(More)
The dependence of iron oxide nanoparticle formation on the structure and thermal properties of Fe oleate complexes has been studied using FTIR, elemental analysis, X-ray photoelectron spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM. The combination of FTIR,(More)
The development of a lithographic method that can rapidly define nanoscale features across centimetre-scale surfaces has been a long-standing goal for the nanotechnology community. If such a 'desktop nanofab' could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional(More)
Iron oxide nanoparticles (NPs) with diameters of 16.1, 20.5, and 20.8 nm prepared from iron oleate precursors were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD). The coating procedure exploited hydrophobic interactions of octadecene and oleic acid tails while hydrolysis of maleic anhydride moieties allowed the NP hydrophilicity. The PMAcOD(More)
Modification of iron oxide nanoparticles (NPs) synthesized by high temperature solvothermal routes is carried out using two silanes: (i) N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS) where only one end of the molecule reacts with the surface Fe-OH groups and (ii) 3-(triethoxysilyl)propylsuccinic anhydride (SSA) where both ends are reactive with(More)
  • 1