Abram Gabriel

Learn More
More than one million copies of the approximately 300-bp Alu element are interspersed throughout the human genome, with up to 75% of all known genes having Alu insertions within their introns and/or UTRs. Transcribed Alu sequences can alter splicing patterns by generating new exons, but other impacts of intragenic Alu elements on their host RNA are largely(More)
Using a selective screening strategy to enrich for active L1 elements, we isolated 13 full-length elements from a human genomic library. We tested these and two previously-isolated L1s (L1.3 and L1.4) for reverse transcriptase (RT) activity and the ability to retrotranspose in HeLa cells. Of the 13 newly-isolated L1s, eight had RT activity and three were(More)
L1 elements are highly repeated mammalian DNA sequences whose structure suggests dispersal by retrotransposition. A consensus L1 element encodes a protein with sequence similarity to known reverse transcriptases. The second open reading frame from the human L1 element L1.2A was expressed as a fusion protein targeted to Ty1 virus-like particles in(More)
Retroviruses undergo a high frequency of genetic alterations during the process of copying their RNA genomes. However, little is known about the replication fidelity of other elements that transpose via reverse transcription of an RNA intermediate. The complete sequence of 29 independently integrated copies of the yeast retrotransposon Ty1 (173,043 nt) was(More)
Reciprocal translocations are common in cancer cells, but their creation is poorly understood. We have developed an assay system in Saccharomyces cerevisiae to study reciprocal translocation formation in the absence of homology. We induce two specific double-strand breaks (DSBs) simultaneously on separate chromosomes with HO endonuclease and analyze the(More)
Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Nonhomologous repair mechanisms have been relatively less well studied, despite their potential importance in generating chromosomal rearrangements. We have developed a Saccharomyces cerevisiae-based assay to identify and characterize(More)
The tandemly arrayed miniexon genes of the trypanosomatid Crithidia fasciculata are interrupted at specific sites by multiple copies of an inserted element. The element, termed Crithidia retrotransposable element 1 (CRE1), is flanked by 29-base-pair target site duplications and contains a long 3'-terminal poly(dA) stretch. A single 1,140-codon reading frame(More)
Ty1 retrotransposition, like retroviral replication, is a complex series of events requiring reverse transcription of an RNA intermediate, RNA-primed minus- and plus-strand DNA synthesis, multiple strand transfers, and precise cleavages of the template and primers by RNase H. In this report, we examine the structure of in vivo Ty1 replication intermediates,(More)
We previously identified a mutational hotspot upstream of the Ty1 U5-primer binding site (PBS) border and proposed a novel mechanism to account for this phenomenon during Ty1 replication. In this report, we verify key points of our model and show that in vivo RNase H cleavage of Ty1 RNA during minus-strand strong-stop synthesis creates heterogeneous 5' RNA(More)
A plasmid bearing a transpositionally functional GAL1::Ty1 fusion was mutagenized by insertion of four or five codons semirandomly throughout the plasmid. This collection of mutant plasmids was introduced into yeast cells and studied with regard to the properties of the mutant Ty1-encoded proteins and the transposition phenotypes observed. All of the(More)