Learn More
Facioscapulohumeral dystrophy (FSHD) is one of the most common inherited muscular dystrophies. The causative gene remains controversial and the mechanism of pathophysiology unknown. Here we identify genes associated with germline and early stem cell development as targets of the DUX4 transcription factor, a leading candidate gene for FSHD. The genes(More)
The regulatory networks of differentiation programs have been partly characterized; however, the molecular mechanisms of lineage-specific gene regulation by highly similar transcription factors remain largely unknown. Here we compare the genome-wide binding and transcription profiles of NEUROD2-mediated neurogenesis with MYOD-mediated myogenesis. We(More)
The discovery of the transcription factor MyoD and its ability to induce muscle differentiation was the first demonstration of genetically programmed cell transdifferentiation. MyoD functions by activating a feed-forward circuit to regulate muscle gene expression. This requires binding to specific E-boxes throughout the genome, followed by recruitment of(More)
The binding of transcription factors to specific DNA target sequences is the fundamental basis of gene regulatory networks. Chromatin immunoprecipitation combined with DNA tiling arrays or high-throughput sequencing (ChIP-chip and ChIP-seq, respectively) has been used in many recent studies that detail the binding sites of various transcription factors.(More)
MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a "shared" E-box sequence (CAGCTG) and a "private" sequence (CAGGTG or CAGATG, respectively). To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant(More)
Presented here are the 5-year end-of-study results from the pivotal phase 2 trial of brentuximab vedotin in patients with relapsed/refractory (R/R) Hodgkin lymphoma (HL) after failed hematopoietic autologous stem cell transplantation. At 5 years, the overall patient population (N = 102) had an estimated overall survival (OS) rate of 41% (95% confidence(More)
Chromatin-modifying enzymes are known to be critical components for the correct differentiation of embryonic stem cells into specific lineages, such as neurons. Recently, the role of Polycomb group proteins has been studied in the specification and differentiation of muscle stem cells. In this perspective, we review a recent study by Juan and colleagues(More)
MOTIVATION High-throughput ChIP-seq studies typically identify thousands of peaks for a single transcription factor (TF). It is common for traditional motif discovery tools to predict motifs that are statistically significant against a naïve background distribution but are of questionable biological relevance. RESULTS We describe a simple yet effective(More)
Transcription factor overexpression is common in biological experiments and transcription factor amplification is associated with many cancers, yet few studies have directly compared the DNA-binding profiles of endogenous versus overexpressed transcription factors. We analyzed MyoD ChIP-seq data from C2C12 mouse myotubes, primary mouse myotubes, and mouse(More)
Rhabdomyosarcoma is a pediatric tumor of skeletal muscle that expresses the myogenic basic helix-loop-helix protein MyoD but fails to undergo terminal differentiation. Prior work has determined that DNA binding by MyoD occurs in the tumor cells, but myogenic targets fail to activate. Using MyoD chromatin immunoprecipitation coupled to high-throughput(More)