Abraham J. K. Koo

Learn More
Jasmonic acid (JA) and its biologically active derivatives (bioactive JAs) perform a critical role in regulating plant responses to wound stress. The perception of bioactive JAs by the F-box protein COI1 triggers the SCF(COI1)/ubiquitin-dependent degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the expression of JA-response genes. JA is(More)
Jasmonate (JA) and its amino acid conjugate, jasmonoyl-isoleucine (JA-Ile), play important roles in regulating plant defense responses to insect herbivores. Recent studies indicate that JA-Ile promotes the degradation of JASMONATE ZIM-domain (JAZ) transcriptional repressors through the activity of the E(3) ubiquitin-ligase SCF(COI1). Here, we investigated(More)
The genome of Arabidopsis has been searched for sequences of genes involved in acyl lipid metabolism. Over 600 encoded proteins have been identified, cataloged, and classified according to predicted function, subcellular location, and alternative splicing. At least one-third of these proteins were previously annotated as "unknown function" or with functions(More)
The lipid-derived hormone jasmonate (JA) regulates diverse aspects of plant immunity and development. Among the central components of the JA signaling cascade are the E3 ubiquitin ligase SCFCOI1 and Jasmonate ZIM-domain (JAZ) proteins that repress transcription of JA-responsive genes. Recent studies provide evidence that amino acid-conjugated forms of JA(More)
Cutin and suberin are the two major lipid-based polymers of plants. Cutin is the structural polymer of the epidermal cuticle, the waterproof layer covering primary aerial organs and which is often the structure first encountered by phytopathogens. Suberin contributes to the control of diffusion of water and solutes across internal root tissues and in(More)
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) signals through the COI1-JAZ coreceptor complex to control key aspects of plant growth, development, and immune function. Despite detailed knowledge of the JA-Ile biosynthetic pathway, little is known about the genetic basis of JA-Ile catabolism and inactivation. Here, we report the identification of a wound-(More)
Plant tissues are highly vulnerable to injury by herbivores, pathogens, mechanical stress, and other environmental insults. Optimal plant fitness in the face of these threats relies on complex signal transduction networks that link damage-associated signals to appropriate changes in metabolism, growth, and development. Many of these wound-induced adaptive(More)
Jasmonates (JAs) are plant hormones that regulate the balance between plant growth and responses to biotic and abiotic stresses. Although recent studies have uncovered the mechanisms for JA-induced responses in Arabidopsis thaliana, the mechanisms by which plants attenuate the JA-induced responses remain elusive. Here, we report that a basic(More)
Jasmonic acid (JA) is a lipid-derived signal that regulates a wide variety of developmental and defense-related processes in higher plants. JA is synthesized from linolenic acid via an enzymatic pathway that initiates in the plastid and terminates in peroxisomes. The C18 JA precursor 12-oxo-phytodienoic acid (OPDA) is converted in the peroxisome to(More)
Biotic stress constrains plant productivity in natural and agricultural ecosystems. Repression of photosynthetic genes is a conserved plant response to biotic attack, but how this transcriptional reprogramming is linked to changes in photosynthesis and the transition from growth- to defense-oriented metabolism is poorly understood. Here, we used a(More)