Abraham Albert Ungar

Learn More
Hyperbolic trigonometry is developed and illustrated in this article along lines parallel to Euclidean trigonometry by exposing the hyperbolic trigonometric law of cosines and of sines in the Poincaré ball model of n-dimensional hyperbolic geometry, as well as their application. The Poincaré ball model of 3-dimensional hyperbolic geometry is becoming(More)
Gyrogroups are generalized groups modelled on the Einstein groupoid of all relativistically admissible velocities with their Einstein’s velocity addition as a binary operation. Einstein’s gyrogroup fails to form a group since it is nonassociative. The breakdown of associativity in the Einstein addition does not result in loss of mathematical regularity(More)
An involutory decomposition is a decomposition, due to an involution, of a group into a twisted subgroup and a subgroup. We study unexpected links between twisted subgroups and gyrogroups. Twisted subgroups arise in the study of problems in computational complexity. In contrast, gyrogroups are grouplike structures which rst arose in the study of Einstein's(More)
Following a brief review of the history of the link between Einstein’s velocity addition law of special relativity and the hyperbolic geometry of Bolyai and Lobachevski, we employ the binary operation of Einstein’s velocity addition to introduce into hyperbolic geometry the concepts of vectors, angles and trigonometry. In full analogy with Euclidean(More)
Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the(More)