Learn More
In humans, septal defects are among the most prevalent congenital heart diseases, but their cellular and molecular origins are not fully understood. We report that transcription factor Tbx5 is present in a subpopulation of endocardial cells and that its deletion therein results in fully penetrant, dose-dependent atrial septal defects in mice. Increased(More)
The G1 cyclins play a pivotal role in regulation of cell differentiation and proliferation. The mechanisms underlying their cell-specific roles are incompletely understood. Here, we show that a G1 cyclin, cyclin D2 (CycD2), enhances the activity of transcription factor GATA4, a key regulator of cardiomyocyte growth and differentiation. GATA4 recruits CycD2(More)
Transcription factor GATA4 is a key regulator of cardiomyocyte growth, and differentiation and 50% reduction in GATA4 levels results in hypoplastic hearts. Search for GATA4 targets/effectors revealed cyclin D(2) (CD2), a member of the D-type cyclins (D(1), D(2), and D(3)) that play a vital role in cell growth and differentiation as a direct transcriptional(More)
GATA4-6 transcription factors regulate numerous aspects of development and homeostasis in multiple tissues of mesodermal and endodermal origin. In the heart, the best studied of these factors, GATA4, has multiple distinct roles in cardiac specification, differentiation, morphogenesis, hypertrophy and survival. To improve understanding of how GATA4 achieves(More)
TBX5 is the gene mutated in Holt-Oram syndrome, an autosomal dominant disorder with complex heart and limb deformities. Its protein product is a member of the T-box family of transcription factors and an evolutionarily conserved dosage-sensitive regulator of heart and limb development. Understanding TBX5 regulation is therefore of paramount importance. Here(More)
TBX5, a member of the T-box family of transcription factors, is a dosage sensitive regulator of heart development. Mutations in TBX5 are responsible for Holt-Oram Syndrome, an autosomal dominant disease with variable and partially penetrant cardiac defects suggestive of the existence of genetic and environmental modifiers. KLF13, a member of the(More)
  • 1