Abir Kumar Panda

  • Citations Per Year
Learn More
Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer(More)
Natural compounds obtained from plants are capable of garnering considerable attention from the scientific community, primarily due to their ability to check and prevent the onset and progress of cancer. These natural compounds are primarily used due to their nontoxic nature and the fewer side effects they cause compared to chemotherapeutic drugs.(More)
p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus.(More)
Immune systems play a pivotal role in recognizing cancer and induce effective immune responses for their clearance. Avoidance of immune system is one of the major hallmarks in cancer progression that successively transforms immune surveillance (tumor eradication) to immune tolerance (tumor progression). Modulation of immune cells to harness the power of(More)
T-regulatory cells are an upsurge in the tumor microenvironment and induce immune-evasion. CD4+ Treg cells are well characterized whereas the role of CD8+ Tregs in cancer has recently started to crease attention. Here, we report an augmentation CD8+FOXP3+ Tregs in breast tumor microenvironment. FOXP3, the lineage-specific transcription factor, is a dominant(More)
FoxP3, a lineage-specification factor, executes its multiple activities mostly through transcriptional regulation of target genes. We identified an interleukin-10 (IL-10)-producing FoxP3(+) T regulatory cell population that contributes to IL-10-dependent type 2 cytokine bias in breast-cancer patients. Although genetic ablation of FOXP3 inhibited IL10(More)
Tumour progression is associated with immune-suppressive conditions that facilitate the escape of tumour cells from the regimen of immune cells, subsequently paralysing the host defence mechanisms. Induction of CD4(+)  CD25(+)  FoxP3(+) T regulatory (Treg) cells has been implicated in the tumour immune escape mechanism, although the novel anti-cancer(More)
This article has been withdrawn by the authors. A mistake was made during the preparation of Fig 1C, NKE panel. The Western blot data shown for p-ERK1/2 and actin are not from this set, but rather a similar set of data from a different experiment. The authors apologize to the readers.
  • 1