Learn More
AIMS Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to(More)
Although resting hemodynamic load has been extensively investigated as a determinant of left ventricular (LV) hypertrophy, little is known about the relationship between provoked hemodynamic load and the risk of LV hypertrophy. We studied central pressure-flow relations among 40 hypertensive and 19 normotensive adults using carotid applanation tonometry and(More)
Detailed imaging of complex blood flow may improve early diagnosis of cardiovascular disease. In clinical practice, non-invasive flow imaging has been limited to one-dimensional Doppler techniques. Searching for multi-dimensional estimators, research has given attention to speckle tracking (ST) and vector Doppler (VD). However, these techniques have yet to(More)
We used a multiphysics model to assess the accuracy of carotid strain estimates derived from a 1-D ultrasonic wall tracking algorithm. The presented tool integrates fluid-structure interaction (FSI) simulations with an ultrasound simulator (Field II), which allows comparison of the ultrasound (US) images with a ground truth. Field II represents tissue as(More)
The long-term patency of the left internal mammary artery (LIMA) in left anterior descending (LAD) coronary stenosis bypass surgery is believed to be related to the degree of competitive flow between the LAD and LIMA. To investigate the effect of the LAD stenosis severity on this phenomenon and on haemodynamics in the LIMA and anastomosis region, a(More)
Ultrasonic Doppler techniques are well established and allow qualitative and quantitative flow analysis. However, due to inherent limitations of the imaging process, the actual flow dynamics and the ultrasound (US) image do not always correspond. To investigate the performance of ultrasonic flow imaging methods, computational fluid dynamics (CFD) can play(More)
Despite extensive attention to abdominal aortic aneurysm (AAA) in the biomedical engineering community, its effect on aortic hemodynamics and arterial wave reflection has not been addressed before. We used experimental and numerical methods, relying on a realistic AAA geometry constructed from patient computer tomography scans (CT-scans), to study this(More)
A quantitative angle-independent 2-D modality for flow and tissue imaging based on multi-angle plane wave acquisition was evaluated. Simulations of realistic flow in a carotid artery bifurcation were used to assess the accuracy of the vector Doppler (VD) technique. Reduction in root mean square deviation from 27 cm/s to 6 cm/s and 7 cm/s to 2 cm/s was found(More)
BACKGROUND Myocardial afterload depends on left ventricular (LV) cavity size, pressure, and wall thickness, all of which change markedly throughout ejection. We assessed the relationship between instantaneous ejection-phase pressure and myocardial stress and the effect of arterial wave reflections on myocardial stress in hypertensive and normotensive(More)