Abigail Besemer

  • Citations Per Year
Learn More
PURPOSE There is a compelling need for personalized dosimetry in targeted radionuclide therapy given that conventional dose calculation methods fail to accurately predict dose response relationships. To address this need, we have developed a Geant4-based Monte Carlo patient-specific 3D dosimetry platform for TRT. This platform calculates patient-specific(More)
Uncertainties in the estimated mean excitation energies (I-values) needed for calculating proton stopping powers can be in the order of 10-15%, which introduces a fundamental limitation in the accuracy of proton range determination. Previous efforts have quantified shifts in proton depth dose distributions due to I-value uncertainties in water and(More)
PURPOSE The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. METHODS PET/CT images of four mice were(More)
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6,(More)
PURPOSE Combination targeted radionuclide therapy (TRT) is appealing because it can potentially exploit different mechanisms of action from multiple radionuclides as well as the variable dose rates due to the different radionuclide half-lives. The work describes the development of a multiobjective optimization algorithm to calculate the optimal ratio of(More)
PURPOSE he efficacy of targeted radionuclide therapy (TRT) depends on the ability to accurately characterize the absorbed dose distribution within tumors as well as other potential dose limiting organs. Clinical data suggests a compelling need for personalized dosimetry given that conventional dose calculation methods fail to accurately predict dose(More)
BACKGROUND AND PURPOSE CLR1404 is a phospholipid ether that exhibits selective uptake and retention in malignant tissues. Radiolabeled CLR1404 enables tumor-specific positron-emission tomography (PET) imaging ((124)I) and targeted delivery of ionizing radiation ((131)I). Here we describe the first preclinical studies of this diapeutic molecule in head and(More)
  • 1