Abigél Gonda

Learn More
Most studies seeking to provide evolutionary explanations for brain size variability have relied on interspecific comparisons, while intraspecific studies utilizing ecologically divergent populations to this effect are rare. We investigated the brain size and structure of first-generation laboratory-bred nine-spined sticklebacks (Pungitius pungitius) from(More)
The proximate and ultimate explanations for behavioural syndromes (correlated behaviours--a population trait) are poorly understood, and the evolution of behavioural types (configuration of behaviours--an individual trait) has been rarely studied. We investigated population divergence in behavioural syndromes and types using individually reared, completely(More)
The influence of environmental complexity on brain development has been demonstrated in a number of taxa, but the potential influence of social environment on neural architecture remains largely unexplored. We investigated experimentally the influence of social environment on the development of different brain parts in geographically and genetically(More)
1. Allometric scaling of sexual size dimorphism (SSD) with body size is a commonplace occurrence in intraspecific or interspecific comparisons. Typically, SSD increases with body size when males, and decreases when females are the larger sex--a pattern known as Rensch's rule. Intraspecific studies of Rensch's rule in vertebrates are extremely scarce. 2. In(More)
The relaxation of predation and interspecific competition are hypothesized to allow evolution toward "optimal" body size in island environments, resulting in the gigantism of small organisms. We tested this hypothesis by studying a small teleost (nine-spined stickleback, Pungitius pungitius) from four marine and five lake (diverse fish community) and nine(More)
An increasing number of studies have demonstrated phenotypic plasticity in brain size and architecture in response to environmental variation. However, our knowledge on how brain architecture is affected by commonplace ecological interactions is rudimentary. For example, while intraspecific competition and risk of predation are known to induce adaptive(More)
Most evolutionary studies on the size of brains and different parts of the brain have relied on interspecific comparisons, and have uncovered correlations between brain architecture and various ecological, behavioural and life-history traits. Yet, similar intraspecific studies are rare, despite the fact that they could better determine how selection and(More)
According to Huey and Slatkin’s [Q Rev Biol 51:363–384, 1976] cost–benefit model of behavioural thermoregulation, lizards should adjust their thermoregulatory strategy between active thermoregulation and thermoconformity (no thermoregulation) according to the costs (time and energy spent thermoregulating, exposure to predators), benefits (optimised(More)
Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial(More)
Due to its influence on body size, timing of maturation is an important life-history trait in ectotherms with indeterminate growth. Comparison of patterns of growth and maturation within and between two populations (giant vs. normal sized) of nine-spined sticklebacks (Pungitius pungitius) in a breeding experiment revealed that the difference in mean adult(More)