Abhishek Sharma

Learn More
This paper presents a general multi-view feature extraction approach that we call Generalized Multiview Analysis or GMA. GMA has all the desirable properties required for cross-view classification and retrieval: it is supervised, it allows generalization to unseen classes, it is multi-view and kernelizable, it affords an efficient eigenvalue based solution(More)
This paper presents a novel way to perform multi-modal face recognition. We use Partial Least Squares (PLS) to linearly map images in different modalities to a common linear subspace in which they are highly correlated. PLS has been previously used effectively for feature selection in face recognition. We show both theoretically and experimentally that PLS(More)
This paper proposes a learning-based approach to scene parsing inspired by the deep Recursive Context Propagation Network (RCPN). RCPN is a deep feed-forward neural network that utilizes the contextual information from the entire image, through bottom-up followed by top-down context propagation via random binary parse trees. This improves the feature(More)
We propose a deep feed-forward neural network architecture for pixel-wise semantic scene labeling. It uses a novel recursive neural network architecture for context propagation, referred to as rCPN. It first maps the local visual features into a semantic space followed by a bottom-up aggregation of local information into a global representation of the(More)
We propose a novel pose-invariant face recognition approach which we call Discriminant Multiple Coupled Latent Subspace framework. It finds the sets of projection directions for different poses such that the projected images of the same subject in different poses are maximally correlated in the latent space. Discriminant analysis with artificially simulated(More)
With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products. Yet, capturing the geometry or complete shapes of everyday objects using scanning devices (e.g. Kinect) still comes with several challenges that result in noise or even incomplete shapes. Recent success in deep(More)
Convolutional Neural Networks (ConvNets) have shown excellent results on many visual classification tasks. With the exception of ImageNet, these datasets are carefully crafted such that objects are well-aligned at similar scales. Naturally, the feature learning problem gets more challenging as the amount of variation in the data increases, as the models(More)
Web services have been gaining popularity since the introduction of Service-oriented architecture and cloud computing. With more and more legacy systems migrating to service-oriented architectures and the cloud, an urgent need for proper testing techniques is becoming apparent. This paper provides an overview of the current state of research into testing of(More)
We are interested in holistic scene understanding where images are accompanied with text in the form of complex sentential descriptions. We propose a holistic conditional random field model for semantic parsing which reasons jointly about which objects are present in the scene, their spatial extent as well as semantic segmentation, and employs text as well(More)