Abhishek Datta

Learn More
The spatial resolution of conventional transcranial direct current stimulation (tDCS) is considered to be relatively diffuse owing to skull dispersion. However, we show that electric fields may be clustered at distinct gyri/sulci sites because of details in tissue architecture/conductivity, notably cerebrospinal fluid (CSF). We calculated the cortical(More)
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modulate cortical excitability. Although increased/decreased excitability under the anode/cathode electrode is nominally associated with membrane depolarization/hyperpolarization, which cellular compartments (somas, dendrites, axons and their terminals) mediate(More)
Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and(More)
Transcranial direct current stimulation (tDCS) provides a non-invasive tool to elicit neuromodulation by delivering current through electrodes placed on the scalp. The present clinical paradigm uses two relatively large electrodes to inject current through the head resulting in electric fields that are broadly distributed over large regions of the brain. In(More)
The recent resurgence in the use of transcranial Direct Current Stimulation (tDCS) for electrotherapy and human cognition studies was motivated by studies demonstrating lasting change in corticospinal excitability following tDCS (Priori et al., 1998; Nitsche and Paulus, 2000, 2001) including at the University of Gottingen. Subsequent tDCS studies have(More)
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA(More)
BACKGROUND Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly(More)
In this issue, Moliadze and colleagues investigate the role of electrode montage in the induction of acute lasting excitability changes by transcranial Direction Current Stimulation (tDCS) and transcranial Random Noise Stimulation (tRNS); specifically they demonstrate that during weak transcranial electrical stimulation, the position of the ‘‘return”(More)
We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric(More)
Transcutaneous electrical stimulation is applied in a range of biomedical applications including transcranial direct current stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of(More)