Abhinav Shrivastava

Learn More
We propose NEIL (Never Ending Image Learner), a computer program that runs 24 hours per day and 7 days per week to automatically extract visual knowledge from Internet data. NEIL uses a semi-supervised learning algorithm that jointly discovers common sense relationships (e.g., "Corolla is a kind of/looks similar to Car", "Wheel is a part of Car") and labels(More)
The goal of this work is to find <i>visually similar</i> images even if they appear quite different at the raw pixel level. This task is particularly important for matching images across visual domains, such as photos taken over different seasons or lighting conditions, paintings, hand-drawn sketches, etc. We propose a surprisingly simple method that(More)
The field of object detection has made significant advances riding on the wave of region-based ConvNets, but their training procedure still includes many heuristics and hyperparameters that are costly to tune. We present a simple yet surprisingly effective online hard example mining (OHEM) algorithm for training region-based ConvNet detectors. Our(More)
There have been some recent efforts to build visual knowledge bases from Internet images. But most of these approaches have focused on bounding box representation of objects. In this paper, we propose to enrich these knowledge bases by automatically discovering objects and their segmentations from noisy Internet images. Specifically, our approach combines(More)
We consider the problem of semi-supervised bootstrap learning for scene categorization. Existing semi-supervised approaches are typically unreliable and face semantic drift because the learning task is under-constrained. This is primarily because they ignore the strong interactions that often exist between scene categories, such as the common attributes(More)
OBJECTIVE The goal of this study was to evaluate the background and the clinical profile of nonepileptic seizures (NESs) confirmed by short-term video encephalography (ST-VEEG) recording in an Indian population. METHODS Seventy-one patients with NESs were enrolled. A complete history was taken and the recorded event was reviewed to define the ictal(More)
This paper proposes a novel part-based representation for modeling object categories. Our representation combines the effectiveness of deformable part-based models with the richness of geometric representation by defining parts based on consistent underlying 3D geometry. Our key hypothesis is that while the appearance and the arrangement of parts might vary(More)
We present a semi-supervised approach that localizes multiple unknown object instances in long videos. We start with a handful of labeled boxes and iteratively learn and label hundreds of thousands of object instances. We propose criteria for reliable object detection and tracking for constraining the semi-supervised learning process and minimizing semantic(More)
Multi-task learning in Convolutional Networks has displayed remarkable success in the field of recognition. This success can be largely attributed to learning shared representations from multiple supervisory tasks. However, existing multi-task approaches rely on enumerating multiple network architectures specific to the tasks at hand, that do not(More)
Building on the success of recent discriminative mid-level elements, we propose a surprisingly simple approach for object detection which performs comparable to the current state-of-the-art approaches on PASCAL VOC comp-3 detection challenge (no external data). Through extensive experiments and ablation analysis, we show how our approach effectively(More)