Abhinav Parihar

Learn More
Strongly correlated phases exhibit collective carrier dynamics that if properly harnessed can enable novel functionalities and applications. In this article, we investigate the phenomenon of electrical oscillations in a prototypical MIT system, vanadium dioxide (VO 2). We show that the key to such oscillatory behaviour is the ability to induce and stabilize(More)
Harnessing the computational capabilities of dynamical systems has attracted the attention of scientists and engineers form varied technical disciplines over decades. The time evolution of coupled, non-linear synchronous oscillatory systems has led to active research in understanding their dynamical properties and exploring their applications in(More)
—As complementary metal–oxide–semiconductor (CMOS) scaling continues to offer insurmountable challenges, questions about the performance capabilities of Boolean, digital machine based on Von-Neumann architecture, when operated within a power budget, have also surfaced. Research has started in earnest to identify alternative computing paradigms that provide(More)
In this paper we review recent work on novel computing paradigms using coupled oscillatory dynamical systems. We explore systems of relaxation oscillators based on linear state transitioning devices, which switch between two discrete states with hysteresis. By harnessing the dynamics of complex, connected systems we embrace the philosophy of"let physics do(More)
While Boolean logic has been the backbone of digital information processing, there are classes of computationally hard problems wherein this conventional paradigm is fundamentally inefficient. Vertex coloring of graphs, belonging to the class of combinatorial optimization represents such a problem; and is well studied for its wide spectrum of applications(More)
  • 1