Abhijit Takawale

Learn More
Fibroblasts comprise the largest cell population in the myocardium. In heart disease, the number of fibroblasts is increased either by replication of the resident myocardial fibroblasts, migration and transformation of circulating bone marrow cells, or by transformation of endothelial/epithelial cells into fibroblasts and myofibroblasts. The primary(More)
AIMS Tissue inhibitor of metalloproteinases (TIMPs) can mediate myocardial remodelling, hypertrophy, and fibrosis in heart disease. We investigated the impact of TIMP2 vs. TIMP3 deficiency in angiotensin II (Ang II)-induced myocardial remodelling and cardiac dysfunction. METHODS AND RESULTS TIMP2(-/-), TIMP3(-/-), and wild-type (WT) mice received Ang(More)
Adverse remodeling of the extracellular matrix (ECM) is a significant characteristic of heart failure. Reverse remodeling of the fibrillar ECM secondary to mechanical unloading of the left ventricle (LV) by left ventricular assist device (LVAD) has been subject of intense investigation; however, little is known about the impacts on nonfibrillar ECM and(More)
BACKGROUND Myocardial reperfusion after ischemia (I/R), although an effective approach in rescuing the ischemic myocardium, can itself trigger several adverse effects including aberrant remodeling of the myocardium and its extracellular matrix. Tissue inhibitor of metalloproteinases (TIMPs) protect the extracellular matrix against excess degradation by(More)
AIMS Hypertension is accompanied by structural remodelling of vascular extracellular matrix (ECM). Tissue inhibitor of metalloproteinases (TIMPs) inhibits matrix metalloproteinases (MMPs) that degrade the matrix structural proteins. In response to a hypertensive stimulus, the balance between MMPs and TIMPs is altered. We examined the role of TIMPs in(More)
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Tectona grandis Linn. is traditionally used in the treatment of diabetes. AIM The present study was undertaken to investigate the effect of ethanolic extract of bark of Tectona grandis Linn. (TG) in dexamethasone-induced insulin resistance in mice. MATERIALS AND METHODS Mice were treated with prestandardised(More)
Despite significant advances in treating heart disease, heart failure remains a major cause of morbidity and mortality. Regardless of the initiating cause(s), heart failure is associated with disruptions in the myocardial extracellular matrix (ECM). ECM is a dynamic structure and its physiological turnover is mediated by matrix metalloproteinases (MMPs) and(More)
Activation of the angiotensin 1–7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1–7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1–7 action. Wild type male C57BL/6 mice (10–12 weeks old) were(More)
AIMS Myocardial ischemia can result in marked mitochondrial damage leading to cardiac dysfunction, as such identifying novel mechanisms to limit mitochondrial injury is important. This study investigated the hypothesis that inhibiting soluble epoxide hydrolase (sEH), responsible for converting epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids(More)
Previously, we reported that cardiac matrix metalloproteinase (MMP)-2 is upregulated in hypertensive mice. How MMP-2 affects the development of cardiac disease is unclear. Here, we report that MMP-2 protects from hypertensive cardiac disease. In mice infused with angiotensin II, the lack of MMP-2 (Mmp2(-/-)) did not affect the severity of the hypertension(More)