Abel Blažević

Learn More
Collimated jets of carbon and fluorine ions up to 5 MeV/nucleon ( approximately 100 MeV) are observed from the rear surface of thin foils irradiated with laser intensities of up to 5 x 10 (19)W/cm(2). The normally dominant proton acceleration could be surpressed by removing the hydrocarbon contaminants by resistive heating. This inhibits screening effects(More)
This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This(More)
PHELIX is a Petawatt high-energy laser for heavy-ion experiments that can deliver 1-10 ns long pulses at 1053 nm with energies up to 1 kJ to the ion beam target chamber at the Z6 experimental area or 200 TW in subpicosecond pulses to the target chamber in the laser bay. Near-term upgrades comprise frequency doubling of the ns pulses to 527 nm and a power(More)
The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator(More)
The comparative efficiency and beam characteristics of high-energy ions generated by high-intensity short-pulse lasers (approximately 1-6 x 10(19) W/cm2) from both the front and rear surfaces of thin metal foils have been measured under identical conditions. Using direct beam measurements and nuclear activation techniques, we find that rear-surface(More)
This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the(More)
We present the results of a detailed study on the acceleration of intense ion beams by relativistic laser plasmas. The experiments were performed at the 100 TW laser at the Laboratoire pour L’Utilisation des Lasers Intenses (LULI). We investigated the dependence of the ion beams on the target conditions based on theoretical predictions by the target normal(More)
This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of(More)
We present the first direct experimental test of the complex ion structure in liquid carbon at pressures around 100 GPa, using spectrally resolved x-ray scattering from shock-compressed graphite samples. Our results confirm the structure predicted by ab initio quantum simulations and demonstrate the importance of chemical bonds at extreme conditions similar(More)
The evolution of laser-generated MeV, MA electron beams propagating through conductors and insulators has been studied by comparing measurement and modeling of the distribution of MeV protons that are sheath accelerated by the propagated electrons. We find that electron flow through metals is uniform and can be laser imprinted, whereas propagation through(More)