Abed M. Chaudhury

Learn More
Maternal control of higher plant seed development is likely to involve female sporophytic as well as female gametophytic genes. While numerous female sporophytic mutants control the production of the ovule and the embryo sac true maternal effect mutations affecting embryo and endosperm development are rare in plants. A new class of female gametophytic(More)
The parental conflict hypothesis predicts that the mother inhibits embryo growth counteracting growth enhancement by the father. In plants the DNA methyltransferase MET1 is a central regulator of parentally imprinted genes that affect seed growth. However the relation between the role of MET1 in imprinting and its control of seed size has remained unclear.(More)
The Arabidopsis mutant Atubp26 initiates autonomous endosperm at a frequency of approximately 1% in the absence of fertilization and develops arrested seeds at a frequency of approximately 65% when self-pollinated. These phenotypes are similar to those of the FERTILIZATION INDEPENDENT SEED (FIS) class mutants, mea, fis2, fie, and Atmsi1, which also show(More)
Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated(More)
  • 1