Abed Khorasani

Learn More
The central nervous system (CNS) plays an important role in regulation of human gait. Parkinson’s disease (PD) is a common neurodegenerative disease that may cause neurophysiologic change in the CNS and as a result change the gait cycle duration (stride interval). This article used the Hidden Markov Model (HMM) with Gaussian Mixtures to separate the(More)
The computation of neural firing rates based on spike sequences has been introduced as a useful tool for extraction of an animal's behavior. Different estimating methods of such neural firing rates have been developed by neuroscientists, and among these methods, time histogram and kernel estimators have been used more than other approaches. In this paper,(More)
Amyotrophic lateral sclerosis (ALS) is a common disease among neurological disorders that can change the pattern of gait in human. One of the effective methods for recognition and analysis of gait patterns in ALS patients is utilizing stride interval time series. With proper preprocessing for removing unwanted artifacts from the raw stride interval times(More)
A local field potential (LFP) signal is an alternative source to neural action potentials for decoding kinematic and kinetic information from the brain. Here we demonstrate that better extraction of force-related features from multichannel LFPs improves the accuracy of force decoding. We propose that applying canonical correlation analysis (CCA) filter on(More)
In this paper a novel automated and unsupervised method for removing artifacts from multichannel field potential signals is introduced which can be used in brain computer interface (BCI) applications. The method, which is called minimum noise estimate (MNE) filter is based on an iterative thresholding followed by Rayleigh quotient which tries to find an(More)
Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however,(More)
  • 1