Learn More
Tissue transglutaminase (TG2) catalyzes the cross-linking of proteins by the formation of isopeptide bonds between glutamine (Gln) and lysine (Lys) side chains. Although TG2 is essential for the stabilization of the extracellular matrix, its unregulated activity has been implicated in celiac disease, fibrosis, and cancer metastasis, among other disorders.(More)
Tissue transglutaminase (TG2) is a calcium-dependent enzyme that catalyses several acyl transfer reactions. The most biologically relevant of these involve protein-bound Gln residues as an acyl-donor substrate, and either water or a primary amine as an acyl-acceptor substrate. The former leads to deamidation of Gln to Glu, whereas the latter leads to(More)
Astrocytes play numerous complex roles that support and facilitate the function of neurons. Further, when there is an injury to the central nervous system (CNS) they can both facilitate or ameliorate functional recovery depending on the location and severity of the injury. When a CNS injury is relatively severe a glial scar is formed, which is primarily(More)
Background Glioblastomas (GBMs) are a heterogeneous group of primary brain tumors. These tumors are resistant to therapeutic interventions and invariably recur after surgical resection. The multifunctional protein transglutaminase 2 (TG2) has been shown to promote cell survival in a number of different tumors. There is also evidence that TG2 may be a(More)
Transglutaminase 2 (TG2) is a multifunctional protein that can contribute to cell death and cell survival processes in a variety of disease contexts. Within the brain, TG2 has been shown to promote cell death in ischemic injury when expressed in astrocytes (Colak and Johnson, 2012). However, the specific functions and characteristics of astrocytic TG2 that(More)
To enable the detection of protein conformational isomers, their enzymatic activity and their inhibition in a single experiment, we developed a method based on kinetic capillary electrophoresis coupled on-line with UV detection and ion mobility mass spectrometry (CE-UV-IM-MS). Kinetic CE-UV separated protein conformers and monitored their interconversion(More)
Type 2 transglutaminase (TG2) is an important cancer stem cell survival protein that exists in open and closed conformations. The major intracellular form is the closed conformation that functions as a GTP-binding GTPase and is required for cancer stem cell survival. However, at a finite rate, TG2 transitions to an open conformation that exposes the(More)
  • 1