Abdulkerim Gok

Learn More
Existing timing error models for voltage-scaled functional units ignore the effect of history and correlation among outputs, and the variation in the error behavior at different bit locations. We propose b-HiVE, a model for voltage-scaling-induced timing errors that incorporates these attributes and demonstrates their impact on the overall model accuracy.(More)
Approximate computing techniques based on Voltage Over-Scaling (VOS) can provide quadratic improvements in power efficiency. However, voltage scaling is limited by the inherent fault-tolerance of an application, thus preventing VOS schemes from realizing their full potential. To gain further power efficiency a reduction of the error rate experienced in a(More)
Based on recent advances in nanoscience, data science and the availability of massive real-world datastreams, the mesoscopic evolution of mesoscopic energy materials can now be more fully studied. The temporal evolution is vastly complex in time and length scales and is fundamentally challenging to scientific understanding of degradation mechanisms and(More)
Modern graphs are large, often containing billions of nodes and edges that demand huge amount of processing for analysis purposes. The algorithms processing these graphs often run for long time and consume substantial amount of energy. However, not all edges in the graphs are equally important. Some edges play critical role in maintaining the community and(More)
The reliability of photovoltaic (PV) technology systems is a major concern to the PV industry, and the focus of much recent research activity. To ensure that these efforts return the maximum value for the resources invested, it is critical to design a study protocols that follow good statistical design principles, ensuring simplicity, avoidance of biases,(More)
Accelerated weathering exposures were performed on poly(ethylene-terephthalate) (PET) films. Longitudinal multi-level predictive models as a function of PET grades and exposure types were developed for the change in yellowness index (YI) and haze (%). Exposures with similar change in YI were modeled using a linear fixed-effects modeling approach. Due to the(More)
  • 1