Learn More
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometry experiments. In steady state, we observe that the material is heterogeneous, and we find that the local rheology presents a continuous transition at(More)
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits shear thickening. From magnetic resonance imaging velocimetry and classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid, and then solid again when it shear thickens. For the onset of(More)
We propose a new view on yield stress materials. Dense suspensions and many other materials have a yield stress-they flow only if a large enough shear stress is exerted on them. There has been an ongoing debate in the literature on whether true yield stress fluids exist, and even whether the concept is useful. This is mainly due to the experimental(More)
We study the emergence of a yield stress in dense suspensions of non-Brownian particles by combining local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometric experiments. We show that the competition between gravity and viscous stresses is at the origin of the development of a yield stress in these systems(More)
In the boreal forest, fire, insects, and logging all affect spatial patterns in forest age and species composition. In turn, spatial legacies in age and composition can facilitate or constrain further disturbances and have important consequences for forest spatial structure and sustainability. However, the complex three-way interactions among fire, insects,(More)
We study the emergence of discontinuous shear thickening (DST) in cornstarch by combining macroscopic rheometry with local magnetic resonance imaging measurements. We bring evidence that macroscopic DST is observed only when the flow separates into a low-density flowing and a high-density jammed region. In the shear-thickened steady state, the local(More)
Yield stress fluids have proven difficult to characterize, and a reproducible determination of the yield stress is difficult. We study two types of yield stress fluids (YSF) in a single system: simple and thixotropic ones. This allows us to show that simple YSF are simply a special case of thixotropic ones, and to pinpoint the difference between static and(More)
We study the rheology of cornstarch suspensions, a non – Brownian particle system that exhibits discontinuous shear thickening. Using Magnetic Resonance Imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization(More)
We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the(More)
We show experimentally that the sliding friction on sand is greatly reduced by the addition of some-but not too much-water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this(More)