Learn More
Lipid droplets are intracellular organelles that are found in most cells, where they have fundamental roles in metabolism. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Lipid droplets are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells, and the importance of(More)
Intracellular trafficking between organelles is achieved by coat protein complexes, coat protomers, that bud vesicles from bilayer membranes. Lipid droplets are protected by a monolayer and thus seem unsuitable targets for coatomers. Unexpectedly, coat protein complex I (COPI) is required for lipid droplet targeting of some proteins, suggesting a possible(More)
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence(More)
Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules(More)
The destabilization process of an emulsion under flow is investigated in a microfluidic device. The experimental approach enables us to generate a periodic train of droplet pairs, and thus to isolate and analyze the basic step of the destabilization, namely, the coalescence of two droplets which collide. We demonstrate a counterintuitive phenomenon:(More)
Water drops dispersed in chloroform and stabilized with phospholipids become adhesive if a bad solvent for lipids, such as silicone oil, is added to the continuous phase. In this way, two sticking drops are separated by a bilayer of phospholipids. By using microfluidic technologies, we probe the stability and properties of such membranes likewise(More)
By using microfluidic chips, we investigate the stability regarding coalescence of droplet pairs under an electric field as a function of drop separation and ac field intensity. Three different regimes are found: stable, coalescence, and partial merging. From this, we identify the two breaking scenarios of a one dimensional train of droplets: in one case(More)
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how(More)
How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with(More)
Water-in-oil emulsion drops are formed and stabilized with phospholipids which can adhere and form a bilayer. Using microfluidics, adhesive drop pairs are then trapped and submitted to an ac electric field. We observe three distinct states as a function of the adhesion energy and the electric field intensity. The pair can be either stable, though slightly(More)