Abderrahim Naji

Learn More
Adult bone marrow-derived mesenchymal stem cells (MSCs) are multipotent cells that are the subject of intense investigation in regenerative medicine. In addition, MSCs possess immunomodulatory properties with therapeutic potential to prevent graft-versus-host disease (GvHD) in allogeneic hematopoietic cell transplantation. Indeed, MSCs can inhibit natural(More)
Adult bone marrow-derived mesenchymal stem cells (MSCs) are multipotential cells capable of regenerating injured tissues. In addition to their multipotency, MSCs inhibit natural killer cell cytotoxicity and T-lymphocyte alloproliferation. Several immunosuppressive mechanisms have been described, including indoleamine 2, 3, -dioxygenase-induced depletion of(More)
Over the past few years, the number of publications concerning the human leukocyte antigen (HLA)-G molecule, its functions, and its pathological implications has greatly increased, largely exceeding those focusing simply on fetal-maternal activity. The role of this molecule in other situations of tolerance such as transplantation, tumor dissemination, or(More)
Inhibition of B cells constitutes a rational approach for treating B cell-mediated disorders. We demonstrate in this article that the engagement of the surface Ig-like transcript 2 (ILT2) inhibitory receptor with its preferential ligand HLA-G is critical to inhibit B cell functions. Indeed, ILT2-HLA-G interaction impedes both naive and memory B cell(More)
HLA-G is a tolerogenic molecule whose detection in sera and within allografted tissues is associated with better graft acceptance. HLA-G mediates T-cell differentiation into suppressor cells, which are thought to promote tolerance. Here, we investigated such T cells phenotypically and functionally and assessed their clinical relevance in the peripheral(More)
Bone-marrow mesenchymal stem cells (MSCs) are the origin of bone-forming cells with immunomodulation potential. HLA-G5 is among the generated immunosuppressive molecules. HLA-G proteins play a crucial role in promoting the acceptance of allografts. However, the mechanisms regulating the expression of HLA-G5 in human MSCs are unknown. We induced(More)
CTLA4-Ig (Belatacept) is a new recombinant molecule that interferes with the signal of T lymphocyte activation and prevents acute rejection after renal transplantation. HLA-G acts as a naturally tolerogenic molecule in humans. In this study, we analyzed whether HLA-G contributes to CTLA4-Ig-mediated graft acceptance. Our results demonstrate that patients(More)
HLA-G is a tolerogenic molecule involved in maternal-fetal tolerance and in allograft acceptance. Soluble HLA-G proteins are present at high levels in plasma from transplanted patients who better accept their graft. In addition, infiltrating mononuclear cells expressing HLA-G can be detected within grafted tissues. To define the role of these HLA-G proteins(More)
Both human leukocyte antigen G (HLA-G) and multipotential mesenchymal stem/stromal cells (MSCs) exhibit immunomodulatory functions. In allogeneic tranplantation, the risks of acute and chronic rejection are still high despite improvement in immunosuppressive treatments, and the induction of a state of tolerance to alloantigens is not achieved.(More)
The biological effects of indium-tin-oxide (ITO) are of considerable importance because workers exposed to indium compounds have been diagnosed with interstitial lung disease or pulmonary alveolar proteinosis; however, the pathophysiology of these diseases is undefined. Here, mice intraperitoneally inoculated with ITO-nanoparticles (ITO-NPs) resulted in(More)