Learn More
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into(More)
We reported that norepinephrine and angiotensin II (Ang II) activate the Ras/mitogen-activated protein (MAP) kinase pathway primarily through the generation of cytochrome P450 (CYP450) metabolites. The purpose of the present study was to determine the contribution of Ras and CYP450 to Ang II-dependent hypertension in rats. Infusion of Ang II (350 ng/min for(More)
When cultured in low serum-containing growth medium, the mouse C(2)C(12) cells exit cell cycle and undergo a well-defined program of differentiation that culminates in the formation of myosin heavy chain-positive bona fide multinucleated muscle cells. To gain an understanding into this process, we compared total, membrane- and nuclear-enriched proteins, and(More)
Fibroblasts, as connective tissue cells, are able to transform into another cell type including smooth muscle cells. α1A-adrenergic receptor (α1A-AR) stimulation in rat-1 fibroblasts is coupled to cAMP production. However, the significance of an increase in cAMP produced by α1A-AR stimulation on proliferation, hypertrophy and differentiation in these cells(More)
A previous study conducted in rat-1 cells expressing alpha(1A)-adrenergic receptors showed that phenylephrine (PHE) stimulates phospholipase D (PLD) activity. This study was conducted to determine the contribution of protein kinase C (PKC) to PHE-induced PLD activation in these cells. PKC inhibitors bisindolylmaleimide (BIM) I and Ro 31-8220, but not Gö(More)
BACKGROUND Phenylephrine (PHE), an alpha1 adrenergic receptor agonist, increases phospholipase D (PLD) activity, independent of classical and novel protein kinase C (PKC) isoforms, in rat-1 fibroblasts expressing alpha1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCzeta to PLD activation in response to PHE in(More)
Phenylephrine (PHE), an α1 adrenergic receptor agonist, increases phospholipase D (PLD) activity, independent of classical and novel protein kinase C (PKC) isoforms, in rat-1 fibroblasts expressing α1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCζ to PLD activation in response to PHE in these cells. PHE(More)
  • 1