Abdelmajid Bouajila

Learn More
—The evolution of CMOS technologies leads to integrated circuits with ever smaller device sizes, lower supply voltage, higher clock frequency and more process variability. Intermittent faults effecting logic and timing are becoming a major challenge for future integrated circuit designs. This paper presents an Organic Computing inspired SoC architecture(More)
This paper presents an architecture to evaluate the reliability of a system-on-chip (SoC) during its runtime that also accounts for the system's redundancy. We propose to integrate an autonomic layer into the SoC to detect the chip's current condition and instruct appropriate countermeasures. In the autonomic layer, error counters are used to count the(More)
This work-in-progress paper surveys error detection techniques for transient, timing, permanent and logical errors in system-on-chip (SoC) design and discusses their applicability in the design of monitors for our Autonomic SoC architecture framework. These monitors will be needed to deliver necessary signals to achieve fault-tolerance, self-healing and(More)
Static and dynamic variations, which have negative impact on the reliability of microelectronic systems, increase with smaller CMOS technology. Thus, further downscaling is only profitable if the costs in terms of area, energy and delay for reliability keep within limits. Therefore, the traditional worst case design methodology will become infeasible.(More)