Abdellah Kharicha

Learn More
A mixture solidification model is employed to study the interaction between the melt flow and the growing mushy zone. The goal is to address the importance of considering the melt flow and flow pattern (laminar or turbulent) in the growing mushy zone. A simple 2D benchmark with parallel flow passing by/through a vertically growing mushy zone is considered.(More)
Avoiding particle entrapment into the solidifying shell of a steel continuous caster is important to improve the quality of the continuous cast product. Therefore, the fluid flow dynamics in the steel melt and mushy zone, heat transfer and solidification of the steel shell, as well as the motion and entrapment of inclusion particles during the casting(More)
With the trend towards increasing complexity of Printed Circuit Boards (PCB), there has been considerable interest of investigation of the embedding process. The main focus has been set on the first step, the chip attachment by using an adhesive. Investigation of the adhesive thickness underneath the component by a numerical and an analytical model has been(More)
A method incorporating the full diffusion-governed solidification kinetics and the ternary phase diagram into a multiphase volume average solidification model is presented. The motivation to develop such a model is to predict macrosegregation in castings. A key feature of this model, different from most previous ones which usually assume an infinite solute(More)
A three-phase model for mixed columnar-equiaxed solidification was recently developed. The most critical features, necessary for modelling the macrosegregation, were considered: the progressive growth of the columnar dendrite trunks from the ingot surface, the nucleation and growth of the equiaxed crystals including the motion of the equiaxed crystals, the(More)
A three-phase mixed columnar-equiaxed solidification model is used to calculate the macrosegregation in a 2.45 ton steel ingot. The main features of mixed columnar-equiaxed solidification in such an ingot can be quantitatively modelled: growth of columnar dendrite trunks; nucleation, growth and sedimentation of equiaxed crystals; thermosolutal convection of(More)
Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations(More)
  • 1