Learn More
The propagation of acoustic waves in a phononic crystal slab consisting of piezoelectric inclusions placed periodically in an isotropic host material is analyzed. Numerical examples are obtained for a square lattice of quartz cylinders embedded in an epoxy matrix. It is found that several complete band gaps with a variable bandwidth exist for elastic waves(More)
It is shown that it is possible to obtain complete planar phononic bandgaps in square and hexagonal (honeycomb) lattice phononic crystals formed by etching a periodic array of circular holes in a thin silicon plate (or membrane). Also, better bandgap properties are obtained using the hexagonal lattice structure; and, with practical structure sizes, it is(More)
We show the evidence of the existence of large complete phononic band gaps ͑CPBGs͒ in two-dimensional phononic crystals ͑PCs͒ formed by embedding cylindrical air holes in a solid plate ͑slab͒. The PC structure is made by etching a hexagonal array of air holes through a freestanding plate of silicon. A fabrication process compatible with(More)
Sonic crystals consisting of three-dimensional arrays of units which exhibit localized resonances have been discovered recently. Here, it is shown that their two-dimensional counterparts behave in a similar manner. Particularly, it is observed that the transmittance spectra show very asymmetric peaks which are explained as a Fano-like interference(More)
Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of(More)
We present a new way of forming phononic crystal waveguides by coupling a series of line-defect resonators. The dispersion proprieties of these coupled resonator acoustic waveguides ͑CRAW͒ can be engineered by using their geometrical parameters. We show that single-mode guiding over a large bandwidth is possible in CRAW formed in a honeycomb-lattice(More)
Articles you may be interested in Experimental evidence of high-frequency complete elastic bandgap in pillar-based phononic slabs Appl. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index Appl. Finite element analysis and experimental study of surface acoustic wave propagation through(More)
It was shown that elastic waves propagating out-of-plane in a two-dimensional phononic crystal can experience full-band-gaps for nonzero values of the wave-vector component parallel to the rods. By further inserting a rod defect, it is demonstrated that modes propagating along the rod defect can be localized within the band-gaps of the phononic crystal.(More)
We report here, the study of domain inversion in lithium niobate (z-cut) by electron beam irradiation without any static bias associated to wet etching, in view of the fabrication of phononic crystals. The inverted domains are revealed by HF-etching taking advantage of the large difference in etching rate between z+ and z-faces. A pertinent choice of(More)
Articles you may be interested in Subwavelength waveguiding of surface phonons in pillars-based phononic crystal Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index Appl. Simulations of acoustic waves bandgaps in a surface of silicon with a periodic hole structure in a thin nickel film Finite(More)