Learn More
Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenyl-amidine) compound DB1255 as an ERG/DNA binding inhibitor(More)
ETS transcription factors mediate a wide array of cellular functions and are attractive targets for pharmacological control of gene regulation. We report the inhibition of the ETS-family member PU.1 with a panel of novel heterocyclic diamidines. These diamidines are derivatives of furamidine (DB75) in which the central furan has been replaced with(More)
Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological(More)
A novel series of 1,3,5-triazine analogs was successfully synthesized through conjugation with benzimidazole or 1,2,4-triazole derivatives via a methylenethio linker. The new analogs were in vitro evaluated against HSV-1 in Vero cells; among these analogs, two compounds exhibited good effect in inhibiting HSV-1 replication (for compound 5p: EC50 = 3.5(More)
DB1255 is a symmetrical diamidinophenyl-dithiophene that exhibits cellular activity by binding to DNA and inhibiting binding of ERG, an ETS family transcription factor that is commonly overexpressed or translocated in leukemia and prostate cancer [Nhili, R., Peixoto, P., Depauw, S., Flajollet, S., Dezitter, X., Munde, M. M., Ismail, M. A., Kumar, A.,(More)
Heterocyclic dications are receiving increasing attention as targeted inhibitors of transcription factors. While many dications act as purely competitive inhibitors, some fail to displace protein efficiently at drug concentrations expected to saturate their DNA target. To achieve a mechanistic understanding of these non-competitive effects, we used a(More)
The DAPI structure has been modified by replacing the phenyl group with substituted phenyl or heteroaryl rings. Twelve amidines were synthesized and their DNA binding, fluorescence properties, in vitro and in vivo activities were evaluated. These compounds are shown to bind in the DNA minor groove with high affinity, and exhibit superior in vitro(More)
Arylimidamide (AIA) compounds containing two pyridylimidamide terminal groups (bis-AIAs) possess outstanding in vitro antileishmanial activity, and the frontrunner bis-AIA DB766 (2,5-bis[2-(2-isopropoxy)-4-(2-pyridylimino)aminophenyl]furan) is active in visceral leishmaniasis models when given orally. Eighteen compounds containing a single pyridylimidamide(More)
Chagas disease is caused by infection with the intracellular protozoan parasite Trypanosoma cruzi. At present, nifurtimox and benznidazole, both compounds developed empirically over four decades ago, represent the chemotherapeutic arsenal for treating this highly neglected disease. However, both drugs present variable efficacy depending on the geographical(More)
  • 1