Abdallah M. Hayar

Learn More
The glomeruli of the olfactory bulb are the first site of synaptic processing in the olfactory system. The glomeruli contain three types of neurons that are referred to collectively as juxtaglomerular (JG) cells: external tufted (ET), periglomerular (PG), and short axon (SA) cells. JG cells are thought to interact synaptically, but little is known about the(More)
Centre-surround inhibition--the suppression of activity of neighbouring cells by a central group of neurons--is a fundamental mechanism that increases contrast in patterned sensory processing. The initial stage of neural processing in olfaction occurs in olfactory bulb glomeruli, but evidence for functional interactions between glomeruli is fragmentary.(More)
Glomeruli, the initial sites of synaptic processing in the olfactory system, contain at least three types of neurons collectively referred to as juxtaglomerular (JG) neurons. The role of JG neurons in odor processing is poorly understood. We investigated the morphology, spontaneous, and sensory-evoked activity of one class of JG neurons, external tufted(More)
Olfactory receptor neurons of the nasal epithelium project via the olfactory nerve (ON) to the glomeruli of the main olfactory bulb, where they form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the olfactory bulb, and with juxtaglomerular interneurons. The glomerular layer contains one of the largest(More)
In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Only ET cells affiliated with the same glomerulus exhibit significant synchronous activity, suggesting that synchrony results mainly from intraglomerular interactions. The intraglomerular mechanisms underlying their synchrony are unknown. Using dual extracellular(More)
In the external plexiform layer (EPL) of the main olfactory bulb, apical dendrites of inhibitory granule cells form large numbers of synapses with mitral and tufted (M/T) cells, which regulate the spread of activity along the M/T cell dendrites. The EPL also contains intrinsic interneurons, the functions of which are unknown. In the present study,(More)
The main olfactory bulb receives a significant modulatory noradrenergic input from the locus coeruleus. Previous in vivo and in vitro studies showed that norepinephrine (NE) inputs increase the sensitivity of mitral cells to weak olfactory inputs. The cellular basis for this action of NE is not understood. The goal of this study was to investigate the(More)
The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the(More)
The properties of dorsal root ganglion (DRG) neurons have been mostly investigated in culture of dissociated cells, and it is uncertain whether these cells maintain the electrophysiological properties of the intact DRG neurons. Few attempts have been made to record from DRG neurons in the intact ganglion using the patch clamp technique. In this study, rat(More)
In the main olfactory bulb, activation of group I metabotropic glutamate receptors (mGluRs) by olfactory nerve stimulation generates slow (2 Hz) oscillations near the basal respiratory frequency. These oscillations arise in the glomerular layer and may be generated, in part, by the intrinsic neurons, the juxtaglomerular neurons. We investigated the(More)