Learn More
Practical noninvasive methods for the measurement of absolute metabolite concentrations are key to the assessment of the depletion of myocardial metabolite pools which occurs with several cardiac diseases, including infarction and heart failure. Localized MRS offers unique noninvasive access to many metabolites, but is often confounded by nonuniform(More)
Human cardiac phosphorus MR saturation transfer experiments to quantify creatine kinase forward rate constants (k(f)) have previously been performed at 1.5 T. Such experiments could benefit from increased signal-to-noise ratio (SNR) and spectral resolution at 3 T. At 1.5 T, the four-angle saturation transfer method was applied with low-angle adiabatic(More)
Cardiac phosphorus magnetic resonance spectroscopy (MRS) with surface coils promises better quantification at 3 Tesla (T) from improved signal-to-noise ratios and spectral resolution compared with 1.5 T. However, Bloch equation and field analyses at 3T show that for efficient quantitative MRS protocols using small-angle adiabatic (BIR4/BIRP) pulses the(More)
PURPOSE To assess possible damage to the hearing of experimental and companion animal subjects of magnetic resonance imaging (MRI) scans. MATERIALS AND METHODS Using animal hearing threshold data and sound level measurements from typical MRI pulse sequences, we estimated "equivalent loudness" experienced by several experimental and companion animals(More)
Interventional, "loopless antenna" MRI detectors are currently limited to 1.5 T. This study investigates whether loopless antennae offer signal-to-noise ratio (SNR) and field-of-view (FOV) advantages at higher fields, and whether device heating can be controlled within safe limits. The absolute SNR performance of loopless antennae from 0.5 to 5 T is(More)
PURPOSE Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1 ) penetration, B1 -inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near-quadratic gains in signal-to-noise ratio and field-of-view with field-strength previously reported(More)
PURPOSE Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the(More)
The "loopless antenna" is an interventional MRI detector consisting of a tuned coaxial cable and an extended inner conductor or "whip". A limitation is the poor sensitivity afforded at, and immediately proximal to, its distal end, which is exacerbated by the extended whip length when the whip is uniformly insulated. It is shown here that tapered insulation(More)
Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with(More)
Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising techniques could enhance their value, provided that signal statistics and image resolution are not compromised. Here, a new denoising method based on spectral subtraction of the measured noise power from each signal acquisition is presented. Spectral subtraction(More)