Abbie C Mclaughlin

Learn More
INTRODUCTION Changes in 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG) incorporation by tumors, detected using positron emission tomography, during response to chemotherapy are utilized clinically in patient management. Here, the effect of treatment with growth-inhibitory doses of the anti-human epidermal growth factor receptor-2 antibody trastuzumab (Herceptin)(More)
Proton, deuterium and carbon magnetic resonance techniques have been widely used to study the hydrocarbon chain region of model bilayer systems and biological membranes (for a review see :[l]). More recently, phosphorus magnetic resonance (31P NMR) has been introduced to study the polar headgroup region of membranes [2-7]. In this communication we show how(More)
The binding of Gd(III) to rabbit IgG (immunoglobulin G) and the Fab (N-terminal half of heavy and light chain), (Bab')2 (N-terminal half of heavy and light chains joined by inter-chain disulphide bond), Fc (C-terminal half of heavy-chain dimer)and pFc' (C-terminal quarter of heavy-chain dimer) fragments was demonstrated by measurements of the enhancement of(More)
We describe for the first time the synthesis of biocompatible TiO2 nanoparticles containing a functional NH2 group which are easily dispersible in water. The synthesis of water dispersible TiO2 nanoparticles coated with mercaptosuccinic acid is also reported. We show that it is possible to exchange the stearic acid from pre-synthesised fatty acid-coated(More)
The 31P NMR spectrum of sonicated dipalmitoyl lecithin vesicles consists of two chemically shifted resonances, separated by -0.15 ppm, which arise from phosphate groups in phospholipid molecules on the insideand the outside of the spherical bilayer vesicles. The widths of the resonances are remarkably sensitive to the crystallineliquid crystalline phase(More)
Phosphorus nuclear magnetic resonance (3’P NMR) is an increasingly important physical technique for the elucidation of structural features of phospholipid bilayer membranes [l-S] . In sonicated vesicles, however, the chemical shift differences between different classes of phospholipids are of approximately the same magnitude as the widths of the resonances(More)
The mechanism of high-transition-temperature (high-T(c)) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order, but the relationship between the two states in the intervening 'pseudogap' regime has become a central puzzle. The role of the crystal lattice, which is important in conventional(More)
A variable temperature neutron and synchrotron diffraction study has been performed on the giant magnetoresistant oxypnictides LMnAsO (L=La, Nd). The low-temperature magnetic structures have been studied, and results show a spin reorientation of the Mn2+ spins below TN (Nd) for NdMnAsO. The Mn2+ spins rotate from alignment along c to alignment into the(More)
We have recently reported a new mechanism of colossal magnetoresistance (CMR) in electron doped manganese oxypnictides NdMnAsO1-xFx. Magnetoresistances of up to -95% at 3 K have been observed. Here we show that upon replacing Nd for Pr, the CMR is surprisingly no longer present. Instead a sizable negative magnetoresistance is observed for PrMnAsO0.95F0.05(More)