Learn More
Alzheimer's disease (AD) pathology is estimated to develop many years before detectable cognitive decline. Fluid and imaging biomarkers may identify people in early symptomatic and even preclinical stages, possibly when potential treatments can best preserve cognitive function. We previously reported that cerebrospinal fluid (CSF) levels of amyloid-beta(42)(More)
OBJECTIVES Amyloid-beta(42) (Abeta(42)) appears central to Alzheimer's disease (AD) pathogenesis and is a major component of amyloid plaques. Mean cerebrospinal fluid (CSF) Abeta(42) is decreased in dementia of the Alzheimer's type. This decrease may reflect plaques acting as an Abeta(42) "sink," hindering transport of soluble Abeta(42) between brain and(More)
Results of recent studies reveal vascular and neuroprotective effects of matrix metalloproteinase-9 (MMP-9) inhibition and MMP-9 gene deletion in experimental stroke. However, the cellular source of MMP-9 produced in the ischemic brain and the mechanistic basis of MMP-9-mediated brain injury require elucidation. In the present study, we used MMP-9-/- mice(More)
OBJECTIVE For therapies for Alzheimer's disease (AD) to have the greatest impact, it will likely be necessary to treat individuals in the "preclinical" (presymptomatic) stage. Fluid and neuroimaging measures are being explored as possible biomarkers of AD pathology that could aid in identifying individuals in this stage to target them for clinical trials(More)
IMPORTANCE Individuals in the presymptomatic stage of Alzheimer disease (AD) are increasingly being targeted for AD secondary prevention trials. How early during the normal life span underlying AD pathologies begin to develop, their patterns of change over time, and their relationship with future cognitive decline remain to be determined. OBJECTIVE To(More)
BACKGROUND We have previously characterised functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's disease. To gain further knowledge on the preclinical phase of Alzheimer's disease, we sought to characterise structural and functional MRI, CSF, and plasma biomarkers in a cohort of young adults carrying a high-penetrance(More)
Programmed cell death (apoptosis) is a normal process in the developing nervous system. Recent data suggest that certain features seen in the process of programmed cell death may be favored in the developing versus the adult brain in response to different brain injuries. In a well characterized model of neonatal hypoxia-ischemia, we demonstrate marked but(More)
Hypoxic-ischemic (H-I) injury to the brain in the perinatal period often leads to significant long-term neurological deficits. In a model of neonatal H-I injury in postnatal day 7 rats, our previous data have shown that cell death with features of apoptosis is prominent between 6 and 24 h after H-I and that neurotrophins, particularly BDNF, can markedly(More)
Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for(More)
Hypoxic-ischemic (H-I) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal H-I injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, previous studies have shown that neurotrophins, such as brain-derived(More)