Learn More
  • Amos Greene Winter, Anette E Hosoi, D David, E Hardt, Anette Peko, Hosoi +125 others
  • 2011
The aim of the research presented in this thesis is to generate compact, lightweight, low-energy, reversible, and dynamic burrowing systems for use in subsea applications such as anchoring, oil recovery, underwater cable installation, mine detonation, and sensor placement. As many organisms have evolved to embed themselves within undersea substrates,(More)
Microchannels can separate analytes faster with higher resolution, higher efficiency and with lower reagent consumption than typical column techniques. Unfortunately, an impediment in the path toward fully integrated microchannel-based labs-on-a-chip is the integration of pre-separation sample processing. Although possible in microchannels, such steps are(More)
We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and(More)
We report a new technique called Digital microfluidic Immunocytochemistry in Single Cells (DISC). DISC automates protocols for cell culture, stimulation and immunocytochemistry, enabling the interrogation of protein phosphorylation on pulsing with stimulus for as little as 3 s. DISC was used to probe the phosphorylation states of platelet-derived growth(More)
Digital microfluidics is a popular tool for lab-on-a-chip applications and is typically implemented in one of two formats: single-plate ͑ " open " ͒ devices or two-plate ͑ " closed " ͒ devices. Single-plate devices have some advantages relative to the more common two-plate format such as faster mixing, the capacity to move larger volumes on a given(More)
Proteomics has emerged as the next great scientific challenge in the post-genome era. But even the most basic form of proteomics, proteome profiling, i.e., identifying all of the proteins expressed in a given sample, has proven to be a demanding task. The proteome presents unique analytical challenges, including significant molecular diversity, an extremely(More)