Learn More
Engineering with departmental honors. He went on to Brown University in Providence, Rhode Island to study signal processing and began research on microphone arrays. He received a Master of Science degree in Electrical Engineering in 1993 and continued to pursue his work towards a Doctor of Philosophy degree. While a student at Brown, he held several(More)
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate(More)
This paper introduces methods to compute impulse responses without specification and estimation of the underlying multivariate dynamic system. The central idea consists in estimating local projections at each period of interest rather than extrapolating into increasingly distant horizons from a given model, as it is done with vector autoregressions (VAR).(More)
Explicit Data Graph Execution (EDGE) architectures offer the possibility of high instruction-level parallelism with energy efficiency. In EDGE architectures, the compiler breaks a program into a sequence of structured blocks that the hardware executes atomically. The instructions within each block communicate directly, instead of communicating through(More)
LY315920 is a potent, selective inhibitor of recombinant human, group IIA, nonpancreatic secretory PLA2 (sPLA2). In a chromogenic isolated enzyme assay, LY315920 inhibited sPLA2 activity with an IC50 of 9 +/- 1 nM or 7.3 x 10(-6) mole fraction, which approached the stiochiometric limit of this assay. The true potency of LY315920 was defined using a(More)
The TRIPS system employs a new instruction set architecture (ISA) called Explicit Data Graph Execution (EDGE) that renegotiates the boundary between hardware and software to expose and exploit concurrency. EDGE ISAs use a block-atomic execution model in which blocks are composed of dataflow instructions. The goal of the TRIPS design is to mine concurrency(More)
Scarcity of multiword expression data sets raises a fundamental challenge to evaluating the systems that deal with these linguistic structures. In this work we attempt to address this problem for a subclass of multiword expressions by producing a large data set annotated by experts and validated by common statistical measures. We present a set of 1048(More)
Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its(More)
AMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet(More)
Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this(More)