Learn More
Digital microfluidics (DMF) is a promising technique for carrying out miniaturized, automated biochemical assays in which discrete droplets of reagents are actuated on the surface of an array of electrodes. A limitation for DMF is nonspecific protein adsorption to device surfaces, which interferes with assay fidelity and can cause droplets to become(More)
A new technique for preparing samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is reported. The technique relies on electrowetting-on-dielectric (EWOD) to move droplets containing proteins or peptides and matrix to specific locations on an array of electrodes for analysis. Standard MALDI-MS reagents, analytes,(More)
Immunoassays have greatly benefited from miniaturization in microfluidic systems. This review, which summarizes developments in microfluidics-based immunoassays since 2000, includes four sections, focusing on the configurations of immunoassays that have been implemented in microfluidics, the main fluid handling modalities that have been used for(More)
Microarrays with biomolecules (e.g., DNA and proteins), cells, and tissues immobilized on solid substrates are important tools for biological research, including genomics, proteomics, and cell analysis. In this paper, the current state of microarray fabrication is reviewed. According to spot formation techniques, methods are categorized as "contact(More)
To realize multiplexed sample preparation on a digital microfluidic chip for high-throughput Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), several fluidic functions need to be integrated. These include the generation of multiple droplets from a reservoir and parallel in-line sample purification. In this paper, we develop two(More)
An in-line sample purification method for MALDI-MS, which relies on the electrowetting-on-dielectric (EWOD)-based technique for digital microfluidics, is reported. In this method, a droplet containing peptides and impurities is moved by EWOD and deposited onto a Teflon-AF surface. A droplet of water is subsequently moved over the spot, where it dissolves(More)
Digital microfluidics has become a popular tool for biochemical and biomedical applications. However, its current format is restricted to actuation of droplets on a single plane. Here, we introduce a new method for fluid handling on flexible devices, which we have termed all-terrain droplet actuation (ATDA). We show that ATDA can be used to manipulate(More)
We report a new technique called Digital microfluidic Immunocytochemistry in Single Cells (DISC). DISC automates protocols for cell culture, stimulation and immunocytochemistry, enabling the interrogation of protein phosphorylation on pulsing with stimulus for as little as 3 s. DISC was used to probe the phosphorylation states of platelet-derived growth(More)