Aaron P. Turkewitz

Learn More
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which(More)
Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including(More)
Ciliates, although single-celled organisms, contain numerous subcellular structures and pathways usually associated with metazoans. How this cell biological complexity relates to the evolution of molecular elements is unclear, because features in these cells have been defined mainly at the morphological level. Among these ciliate features are structures(More)
Genetic analysis of regulated exocytosis can be accomplished in ciliates, since mutants defective in stimulus-dependent secretion of dense-core vesicles can be identified. In Tetrahymena thermophila, secretion in wild-type cells can result in their encapsulation by the proteins released from vesicle cores. Cells with defects in secretion were isolated from(More)
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature(More)
The electron-dense cores of regulated secretory granules in the ciliate Tetrahymena thermophila are crystal lattices composed of multiple proteins. Granule synthesis involves a series of steps beginning with protein sorting, followed by the condensation and precise geometric assembly of the granule cargo. These steps may to various degrees be determined by(More)
In addition to a family of structurally related proteins encoded by the Granule lattice (GRL) genes, the dense core granules in Tetrahymena thermophila contain a second, more heterogeneous family of proteins that can be defined by the presence of a domain homologous to beta/gamma-crystallins. The founding members of the family, Induced during Granule(More)
In some cells, the polypeptides stored in dense core secretory granules condense as ordered arrays. In ciliates such as Tetrahymena thermophila, the resulting crystals function as projectiles, expanding upon exocytosis. Isolation of granule contents previously defined five Granule lattice (Grl) proteins as abundant core constituents, whereas a functional(More)
Human transferrin receptor (tfR) is a covalent homodimer of 90-kDa transmembrane subunits, which transits an endocytotic pathway involving exposure to low pH. Digestion of purified tfR at neutral pH generates a soluble noncovalent dimer of 70-kDa fragment subunits containing 95% of the extracellular tfR sequence, including the transferrin binding sites.(More)
The human asialoglycoprotein receptor (ASGP-R) is a membrane glycoprotein which participates in receptor-mediated endocytosis and delivery of its ligands to lysosomes for degradation. In order to examine the pathways and mechanisms responsible for the turnover and degradation of the ASGP-R we have followed the fate of the ASGP-R in HepG2 cells during(More)