Learn More
Living systems rely on pervasive vascular networks to enable a plurality of biological function in both soft and hard tissue. Extensive vasculature in composite structures, such as osseous tissue in bone and tracheary elements in trees, exemplify natural materials that are lightweight, high-strength, and capable of mass and energy transport. In contrast,(More)
I. INTRODUCTION The controlled release of contents from polymeric capsules is of considerable interest in applications such as self-healing materials, nutrient preservation, fragrance release, and drug delivery. The utility of capsules as vehicles for cargo storage stems from their ability to deliver beneficial agents (e.g., fertilizer) " just in time " to(More)
When heated, poly(lactic acid) (PLA) fibers depolymerize in a controlled manner, making them potentially useful as sacrificial fibers for microchannel fabrication. Catalysts that increase PLA depolymerization rates are explored and methods to incorporate them into commercially available PLA fibers by a solvent mixture impregnating technique are tested. In(More)
For the autonomous repair of damaged materials, microcapsules are needed that release their contents in response to a variety of physical and chemical phenomena, not just by direct mechanical rupture. Herein we report a general route to programmable microcapsules. This method creates core-shell microcapsules with polymeric shell walls composed of(More)
We present a primary example of a cell surface modified with a synergistic combination of agonists to tune immune stimulation. A model cell line, Lewis Lung Carcinoma, was covalently modified with CpG-oligonucleotides and lipoteichoic acid, both Toll-like receptor (TLR) agonists. The immune-stimulating constructs provided greater stimulation of NF-κB in a(More)
We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit(More)
The innate immune response is controlled, in part, by the synergistic interaction of multiple Toll-like receptors (TLRs). This multi-receptor cooperation is responsible for the potent activity of many vaccines, but few tools have been developed to understand the spatio-temporal elements of TLR synergies. In this Communication, we present photo-controlled(More)
Coffee-powered chemistry: Low-grade waste heat on surfaces can be used to drive chemical reactions, including the regeneration of a CO2 capture solution. Flowing two-phase heat transfer has been implemented within microvascular systems. This stripping system can be adapted to pre-fabricated surfaces, as demonstrated by a coffee mug containing a 1.2 m long(More)
  • 1