Aaron M. Jones

Sanfeng Wu6
Grant Aivazian4
6Sanfeng Wu
4Grant Aivazian
Learn More
Monolayer group-VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts), which have thus far been challenging to generate and control in the(More)
As a consequence of degeneracies arising from crystal symmetries , it is possible for electron states at band-edges ('valleys') to have additional spin-like quantum numbers 1–6. An important question is whether coherent manipulation can be performed on such valley pseudospins, analogous to that implemented using true spin, in the quest for quantum(More)
The combination of its high electron mobility, broadband absorption and ultrafast luminescence make graphene attractive for optoelectronic and photonic applications, including transparent electrodes, mode-locked lasers and high-speed optical modulators. Photo-excited carriers that have not cooled to the temperature of the graphene lattice are known as hot(More)
Second order optical nonlinear processes involve the coherent mixing of two electromagnetic waves to generate a new optical frequency, which plays a central role in a variety of applications, such as ultrafast laser systems, rectifiers, modulators, and optical imaging. However, progress is limited in the mid-infrared (MIR) region due to the lack of suitable(More)
Microparticles consisting of the thermal responsive polymer N-isopropyl acrylamide (polyNIPAM), a metal ion-binding ligand and a fluorophore pair that undergoes fluorescence resonance energy transfer (FRET) have been prepared and characterized. Upon the addition of Cu(II), the microparticles swell or contract depending on whether charge is introduced or(More)
  • 1