Learn More
CpG methylation is a key component of the epigenome architecture that is associated with changes in gene expression without a change to the DNA sequence. Since the first reports on deregulation of DNA methylation, in diseases such as cancer, and the initiation of the Human Epigenome Project, an increasing need has arisen for a detailed, high-throughput and(More)
BACKGROUND Cancer is commonly associated with widespread disruption of DNA methylation, chromatin modification and miRNA expression. In this study, we established a robust discovery pipeline to identify epigenetically deregulated miRNAs in cancer. RESULTS Using an integrative approach that combines primary transcription, genome-wide DNA methylation and(More)
We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible(More)
The abnormal methylation of CpG islands located near the transcriptional start sites of human genes plays a major role in carcinogenesis. The methylation of cytosine residues in these regions is associated with alterations in chromatin structure including the binding of methylated DNA binding proteins and changes in the state of modification of histone(More)
One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA(More)
SUMMARY Epigenetics, the study of heritable somatic phenotypic changes not related to DNA sequence, has emerged as a critical component of the landscape of gene regulation. The epigenetic layers, such as DNA methylation, histone modifications and nuclear architecture are now being extensively studied in many cell types and disease settings. Few software(More)
The identification and characterisation of differentially methylated regions (DMRs) between phenotypes in the human genome is of prime interest in epigenetics. We present a novel method, DMRcate, that fits replicated methylation measurements from the Illumina HM450K BeadChip (or 450K array) spatially across the genome using a Gaussian kernel. DMRcate(More)
Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an empirical Bayes approach that uses a fully methylated control sample to transform observed read counts into regional methylation(More)
Imprinting control regions (ICRs) play a fundamental role in establishing and maintaining the non-random monoallelic expression of certain genes, via common regulatory elements such as non-coding RNAs and differentially methylated regions (DMRs) of DNA. We recently surveyed DNA methylation levels within four ICRs (H19-ICR, IGF2-DMR, KvDMR, and NESPAS-ICR)(More)
Combined Bisulfite Restriction Analysis (COBRA) quantifies DNA methylation at a specific locus. It does so via digestion of PCR amplicons produced from bisulfite-treated DNA, using a restriction enzyme that contains a cytosine within its recognition sequence, such as TaqI. Here, we introduce COBRA-seq, a genome wide reduced methylome method that requires(More)