Learn More
The main objective of this study was to determine whether bone-conducted vibration (BCV) is equally effective in activating both semicircular canal and otolith afferents in the guinea pig or whether there is preferential activation of one of these classes of vestibular afferents. To answer this question a large number (346) of single primary vestibular(More)
The response of the classical receptive field of visual neurons can be suppressed by stimuli that, when presented alone, cause no change in the discharge rate. This suppression reveals the presence of an extraclassical receptive field (ECRF). In recordings from the lateral geniculate nucleus (LGN) of a New World primate, the marmoset, we characterize the(More)
The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from(More)
Two-hundred seventy consecutive patients with "unexplained cerebral ischemia" were studied with transesophageal echocardiography to determine the value of this test in identifying potential cardiac sources of cerebral embolism. The findings of this group were compared with those of 772 consecutive patients undergoing transesophageal echocardiographic(More)
Calretinin is a member of the calcium-binding protein EF-hand family first identified in the retina. As with the other 200-plus calcium-binding proteins, calretinin serves a range of cellular functions including intracellular calcium buffering, messenger targeting, and is involved in processes such as cell cycle arrest, and apoptosis. Calcium-binding(More)
Several parallel pathways convey retinal signals to the visual cortex of primates. The signals of the parvocellular (P) and magnocellular (M) pathways are well characterized; the properties of other rarely encountered cell types are distinctive in many ways, but it is not clear that they can provide signals with the same fidelity. Here we study this by(More)
Fast inhibitory synaptic transmission in the medial vestibular nucleus (MVN) is mediated by GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs). To assess their relative contribution to inhibition in the MVN, we recorded miniature inhibitory postsynaptic currents (mIPSCs) in physiologically characterized type A and type B MVN neurons. Transverse(More)
It has long been known that the vast majority of all information en route to the cerebral cortex must first pass through the thalamus. The long held view that the thalamus serves as a simple hi fidelity relay station for sensory information to the cortex, however, has over recent years been dispelled. Indeed, multiple projections from the vestibular nuclei(More)
Prolonged exposure to an effective stimulus generally reduces the sensitivity of neurons early in the visual pathway. Yet eye and head movements bring about frequent changes in the retinal image, and it is less clear that exposure to brief presentations will produce similar desensitization. To address this, we made extracellular recordings from single(More)
PURPOSE To determine whether thallium-201 brain single-photon emission CT could be used to make the distinction between central nervous system lymphoma and toxoplasma encephalitis, which may not be possible by routine MR and CT. METHODS A total of 37 patients with acquired immunodeficiency syndrome who had intracranial mass lesions found during a 9-month(More)