Learn More
It has been suggested that ultrafine particles in urban air may cause the health effects associated with thoracic particles (PM10). We therefore compared the effects of daily variations in particles of different sizes on peak expiratory flow (PEF) during a 57-day follow-up of 39 asthmatic children aged 7-12 years. The main source of particulate air(More)
Airborne particles are associated with adverse health effects and contribute to excess mortality in epidemiological studies. A recent hypothesis proposes that the high numbers of ultrafine (<0.1 microm diameter) particles in ambient air might provoke alveolar inflammation and subsequently cause exacerbations in pre-existing cardiopulmonary diseases. To test(More)
Atmospheric aerosol formation is known to occur almost all over the world, and the importance of these particles to climate and air quality has been recognized. Although almost all of the processes driving aerosol formation take place below a particle diameter of 3 nanometers, observations cover only larger particles. We introduce an instrumental setup to(More)
Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol particle formation begins at the diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both(More)
Daily variations in ambient particulate air pollution are associated with variations in respiratory lung function. It has been suggested that the effects of particulate matter may be due to particles in the ultrafine (0.01-0.1 microm) size range. Because previous studies on ultrafine particles only used self-monitored peak expiratory flow rate (PEFR), we(More)
The short-term association of particulate air pollution with peak expiratory flow rate (PEF) and respiratory symptoms was examined. Forty-nine children with chronic respiratory symptoms aged 8-13 yrs were followed daily for six weeks in spring, 1995, in Kuopio, Finland. Daily concentrations of particulate material with a 50% cut-off aerodynamic diameter <(More)
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient(More)
Aerosol particles affect the Earth’s radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic 5(More)
BACKGROUND Daily variations in ambient particulate air pollution have been associated with respiratory mortality and morbidity. AIMS To assess the associations between urinary concentration of lung Clara cell protein CC16, a marker for lung damage, and daily variation in fine and ultrafine particulate air pollution. METHODS Spot urinary samples (n =(More)
OBJECTIVES This paper describes the resuspension of road dust in an urban subarctic environment and focuses especially on the effect of wind speed on the formation of resuspended dust episodes. METHODS The study was conducted in Kuopio, Finland, in the spring of 1995. There were 36 daily measurements of mass concentrations of fine particulate matter(More)