• Publications
  • Influence
How Many Species Are There on Earth and in the Ocean?
TLDR
It is shown that the higher taxonomic classification of species follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated, and when applied to all domains of life, it predicts ∼8.7 million eukaryotic species globally.
The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists
TLDR
This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists, and proposes a scheme that is based on nameless ranked systematics.
The Revised Classification of Eukaryotes
TLDR
This revision of the classification of eukaryotes retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees.
The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing
TLDR
This Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans.
Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”
TLDR
A phylogenomic analysis of a dataset of 143 proteins and 48 taxa indicates that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.
Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota).
  • A. Simpson
  • Biology
    International journal of systematic and…
  • 1 November 2003
TLDR
An overview of the controversial proposal for the major eukaryote taxon "Excavata" is presented, with phylogenetic diagnoses for Excavata and for two novel taxon names, Fornicata (Carpediemonas, retortamonads, diplomonads) and Preaxostyla (Trimastix, oxymonads).
The real ‘kingdoms’ of eukaryotes
CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms
A group of protist experts proposes a two-step DNA barcoding approach, comprising a universal eukaryotic pre-barcode followed by group-specific barcodes, to unveil the hidden biodiversity of
...
...