• Publications
  • Influence
The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine2C Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways
TLDR
In contrast to melatonin, agomelatine behaves as an antagonist at 5- HT2B and 5-HT2C receptors: blockade of the latter reinforces frontocortical adrenergic and dopaminergic transmission.
Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: A combined dialysis and electrophysiological analysis in the rat
TLDR
5‐HT2C receptors exert a tonic, suppressive influence on the activity of mesocortical — as well as mesolimbic and nigrostriatal — dopaminergic pathways, likely via indirect actions expressed at the level of their cell bodies.
Differential Actions of Antiparkinson Agents at Multiple Classes of Monoaminergic Receptor. I. A Multivariate Analysis of the Binding Profiles of 14 Drugs at 21 Native and Cloned Human Receptor
TLDR
An innovative multivariate analysis revealed marked heterogeneity in binding profiles of antiparkinson agents at diverse receptors implicated in the etiology and/or treatment of Parkinson's disease.
A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, nafadotride, GR 103,691 and U 99194.
TLDR
Both (+)-S 14297 and GR 103,691 are markedly selective ligands that permit the characterization of actions at hD3 vs. hD2 receptors in vitro, but both are of greater utility for the evaluation of their functional significance in vivo.
Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5‐HT2A sites for PCP‐induced locomotion in the rat
TLDR
PCP‐induced locomotion (PLOC) was potently blocked by the selective serotonin (5‐HT)2A vs. D2 antagonists, SR46349, MDL100,907, ritanserin and fananserin, which barely affected amphetamine‐induced Locomotion (ALOC), which is, correspondingly, more potents blocked than ALOC by antipsychotics displaying marked affinity at 5‐HT2A receptors.
Agonist and antagonist actions of yohimbine as compared to fluparoxan at α2‐adrenergic receptors (AR)s, serotonin (5‐HT)1A, 5‐HT1B, 5‐HT1D and dopamine D2 and D3 receptors. Significance for the
TLDR
The α2‐AR antagonist properties of yohimbine increase DA and NAD levels both alone and in association with fluoxetine, whereas fluparoxan selectively enhances hippocampal noradrenaline (NAD) turnover and enhances striatal dopamine turnover and suppresses striatal turnover of 5‐HT.
S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626.
TLDR
S33084 is a novel, potent, selective, and competitive antagonist at hD(3)-receptors that tonically inhibit ascending dopaminergic pathways, although the latter may contribute to phasic suppression of DA release in frontal cortex.
Interactions of (+)- and (-)-8- and 7-hydroxy-2-(di-n-propylamino)tetralin at human (h)D3, hD2 and h serotonin1A receptors and their modulation of the activity of serotoninergic and dopaminergic
TLDR
For these substituted aminotetralins, stereospecificity is a more marked feature of interactions at hD3 and, at higher concentrations, hD2 receptors.
...
1
2
3
4
5
...