Author pages are created from data sourced from our academic publisher partnerships and public sources.

Publications Influence

Three-dimensional finite element simulation of a polycrystalline copper specimen

- A. Musienko, A. Tatschl, +4 authors G. Cailletaud
- Materials Science
- 1 July 2007

The application of crystal plasticity in finite element codes provides a virtual copy of a real grain structure, including stress–strain state and slip system activity. This paper presents, first,… Expand

135 3

Plasticité cristalline en présence de grandes déformations et d'endommagement

- A. Musienko
- Physics
- 17 March 2005

Ce travail s'inscrit dans le cadre de la plasticite cristalline. Sa premiere motivation est le developpement d'une approche couplee, capable de prendre en compte l'interaction entre la plasticite et… Expand

3 1

Lebesgue-type inequalities for the de la Vallée-poussin sums on sets of entire functions

- A. Musienko, A. Serdyuk
- Mathematics
- 31 October 2013

For functions from the sets CψβLs, 1 ≤ s ≤ ∞, where ψ(k) > 0 and $ {\lim_{{k\to \infty }}}\frac{{\psi \left( {k+1} \right)}}{{\psi (k)}} $, we obtain asymptotically sharp estimates for the norms of… Expand

10

Lebesgue-type inequalities for the de la Valée-Poussin sums on sets of analytic functions

- A. Musienko, A. Serdyuk
- 2013

For functions from the sets CβψC and CβψLs, 1 ≤ s ≤ 1, generated by sequences ψ(k) > 0 satisfying the d’Alembert condition $ {\lim_{{k\to \infty }}}\frac{{\psi \left( {k+1} \right)}}{{\psi… Expand

10

Approximation of classes of analytic functions by de la Vallee Poussin sums in uniform metric

- A. Serdyuk, Ie. Yu. Ovsii, A. Musienko
- Mathematics
- 5 December 2011

In this paper asymptotic equalities are found for the least upper bounds of deviations in the uniform metric of de la Vallee Poussin sums on classes of 2\pi-periodic (\psi,\beta)-differentiable… Expand

8- PDF

Numerical Simulations of Cracks in Polycrystalline Aggregates

- G. Cailletaud, S. Basseville, +5 authors Lingtao Sun
- Materials Science
- 7 September 2009

Finite Element Crystal Plasticity is now a well developped field of research that allows the researchers to investigate global and local material behaviour. The initial attempts were devoted to… Expand

Une famille d'algorithmes robustes pour l'intégration de modèles de plasticité cristalline

- A. Musienko, N. Osipov, G. Cailletaud
- Mathematics
- 2007

This paper deals with the numerical implementation of crystal plasticity models into
a finite element code. This type of approach involves several potentials, one has then to deal
with the problem… Expand

Damage, opening and sliding of grain boundaries

- A. Musienko, G. Cailletaud, O. Diard
- Materials Science
- 2004

This paper presents an approach to the modeling of damage, opening and sliding of the grain boundaries in zircaloy submitted to stress corrosion cracking. Grain boundaries are seen as a continuous… Expand

5

Lebesgue-type inequalities for de la Vallee Poussin sums and their interpolation analogues on the sets $(\psi,\bar{\beta})$-differentiable functions

- V. Voitovych, A. Musienko
- Mathematics
- 20 August 2013

We obtain the estimates of steady rates of deviations of the de Vall\'{e}e Poussin sums and interpolation analogues of sums of Vall\'{e}e Poussin from the functions that belong to the space… Expand

Three-dimensional characterization of strain localization bands in high-resolution elastoplastic polycrystals

- F. Barbe, Romain Quey, A. Musienko, G. Cailletaud
- Materials Science
- 1 October 2009

Abstract In crystalline materials, the experimental observation of the localization of plastic strains in particular directions is generally restricted to the surface of a sample containing some… Expand

28

...

1

2

...