• Publications
  • Influence
Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014)
Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of
Physics, Formation and Evolution of Rotating Stars
Stellar Equilibrium With and Without Rotation.- The Mechanical Equilibrium of Stars.- The Mechanical Equilibrium of Rotating Stars.- The Energetic Equilibrium of Stars.- The Energy Conservation and
The effective temperature scale of galactic red supergiants : Cool, but not as cool as we thought
We use moderate-resolution optical spectrophotometry and the new MARCS stellar atmosphere models to determine the effective temperatures of 74 Galactic red supergiants (RSGs). The stars are mostly
Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities
Grids of models of massive stars (M ≥ 20 M� ) with rotation are computed for metallicities Z ranging from that of the Small Magellanic Cloud (SMC) to that of the Galactic Centre. The hydrostatic
Stellar evolution with rotation X: Wolf-Rayet star populations at solar metallicity
We examine the properties of Wolf-Rayet (WR) stars predicted by models of rotating stars taking account of the new mass loss rates for O-type stars and WR stars (Vink et al. 2000. 2001; Nugis &
Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution
We calculate a grid of star models with and without the eects of axial rotation for stars in the mass range between 2 and 60 M for the metallicity Z= 10 5 . Star models with initial masses superior
Populations of rotating stars. - I. Models from 1.7 to 15 Msun at Z = 0.014, 0.006, and 0.002 with {\Omega}/{\Omega}crit between 0 and 1
B-type stars are known to rotate at various velocities, including very fast rotators near the critical velocity as the Be stars. In this paper, we provide stellar models covering the mass range
Stellar evolution with rotation. VII. - Low metallicity models and the blue to red supergiant ratio in the SMC
We calculate a grid of models with and without the eects of axial rotation for massive stars in the range of 9t o 60M and metallicity Z =0 :004 appropriate for the SMC. Remarkably, the ratios =crit
The early star generations: the dominant effect of rotation on the cno yields
Context. Aims. We examine the role of rotation on the evolution and chemical yields of very metal-poor stars. Methods. The models include the same physics, which was applied successfully at the solar
Grids of stellar models with rotation - II. WR populations and supernovae/GRB progenitors at Z = 0.014
Context. In recent years, many very interesting observations have appeared concerning the positions of Wolf-Rayet (WR) stars in the Hertzsprung-Russell diagram (HRD), the number ratios of WR stars,
...
1
2
3
4
5
...