Share This Author
Lie–Hamilton systems on the plane: applications and superposition rules
- A. Blasco, Francisco J Herranz, J. de Lucas, C. Sardón
- Mathematics
- 27 October 2014
A Lie–Hamilton (LH) system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional…
Hamiltonian structure of compartmental epidemiological models
- Á. Ballesteros, A. Blasco, I. Gutierrez-Sagredo
- PhysicsPhysica D: Nonlinear Phenomena
- 31 May 2020
Exact closed-form solution of a modified SIR model.
- Á. Ballesteros, A. Blasco, I. Gutierrez-Sagredo
- Mathematics
- 31 July 2020
The exact analytical solution in closed form of a modified SIR system is presented. This is, to the best of our knowledge, the first closed-form solution for a three-dimensional deterministic…
Lie-Hamilton systems on the plane: Properties, classification and applications
- Á. Ballesteros, A. Blasco, F. J. Herranz, J. Lucas, C. Sard'on
- Mathematics
- 4 November 2013
A new integrable anisotropic oscillator on the two-dimensional sphere and the hyperbolic plane
- Á. Ballesteros, A. Blasco, F. J. Herranz, F. Musso
- Mathematics, Physics
- 7 March 2014
A new integrable generalization to the two-dimensional (2D) sphere, S 2 ?> , and to the hyperbolic space, H 2 ?> , of the 2D Euclidean anisotropic oscillator Hamiltonian with Rosochatius…
(Super)integrability from coalgebra symmetry: formalism and applications
- Á. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, O. Ragnisco
- Mathematics
- 8 May 2009
The coalgebra approach to the construction of classical integrable systems from Poisson coalgebras is reviewed, and the essential role played by symplectic realizations in this framework is…
An integrable Hénon–Heiles system on the sphere and the hyperbolic plane
- Á. Ballesteros, A. Blasco, F. J. Herranz, F. Musso
- Mathematics
- 7 November 2014
We construct a constant curvature analogue on the two-dimensional sphere S2 ?> and the hyperbolic space H2 ?> of the integrable Hénon–Heiles Hamiltonian H ?> given by H=12(…
Integrable deformations of Lotka–Volterra systems
- Á. Ballesteros, A. Blasco, F. Musso
- Mathematics
- 4 June 2011
Integrable deformations of Rössler and Lorenz systems from Poisson–Lie groups
- Á. Ballesteros, A. Blasco, F. Musso
- Mathematics
- 13 January 2016
Integrable Henon-Heiles Hamiltonians: a Poisson algebra approach
- Á. Ballesteros, A. Blasco
- Mathematics
- 12 November 2010
...
...