• Publications
  • Influence
Journal of Physics and Chemistry of Solids
We discuss evolution of the Fermi surface (FS) topology with doping in electron-doped cuprates within the framework of a one-band Hubbard Hamiltonian, where antiferromagnetism and superconductivityExpand
Observation of a large-gap topological-insulator class with a single Dirac cone on the surface
Recent experiments and theories have suggested that strong spin–orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator,Expand
Topological crystalline insulators in the SnTe material class.
This work predicts the first material realization of topological crystalline insulator in the semiconductor SnTe by identifying its non-zero topological index and predicts that as a manifestation of this non-trivial topology, SnTe has metallic surface states with an even number of Dirac cones on high-symmetry crystal surfaces. Expand
A tunable topological insulator in the spin helical Dirac transport regime
The results reveal a spin-momentum locked Dirac cone carrying a non-trivial Berry’s phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime. Expand
Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2.
The first direct observation of the transition from indirect to direct bandgap in monolayer samples is reported by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. Expand
Discovery of a Weyl fermion semimetal and topological Fermi arcs
The experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs), using photoemission spectroscopy, which finds that Fermi arcs terminate on the Weyl fermion nodes, consistent with their topological character. Expand
A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
The results show that in the TaAs-type materials the WeylSemimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials. Expand
Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.
The discovery of the Dirac-like bulk topological semimetal phase in Cd3As2 opens the door for exploring higher dimensional spin-orbit Dirac physics in a real material. Expand
New type of Weyl semimetal with quadratic double Weyl fermions
It is shown that SrSi2 is a Weyl semimetal even without spin– orbit coupling and that, after the inclusion of spin–orbit coupling, two Weyl fermions stick together forming an exotic double Weylfermion with quadratic dispersions and a higher chiral charge of ±2. Expand