Learn More
Let fP n (x)g 1 n=0 and fQ m (x)g 1 m=0 be two families of orthogonal polynomials. The linearization problem involves only one family via the relation: P i (x) P j (x) = i+j X k=ji?jj L ijk P k (x) and the connection problem mixes both families: P n (x) = n X m=0 C m (n) Q m (x): In many cases, it is possible to build a recurrence relation involving only m(More)
—The measure of Jensen-Fisher divergence between probability distributions is introduced and its theoretical grounds set up. This quantity, in contrast to the remaining Jensen divergences, is very sensitive to the fluctuations of the probability distributions because it is controlled by the (local) Fisher information, which is a gradient functional of the(More)
Three different mathematical techniques (maximum-entropy, Stieltjes-type and Pad&like approximants) are used to obtain tight approximations to scattering intensities in terms of a few local and/or global quantities related to the electron-pair density. The accuracy of the approximations is analyzed and compared by means of Hylleraas-type atomic(More)
The asymptotic contracted measure of zeros of a large class of orthogonal polynomials is explicitly given in the form of a Lauricella function. The polynomials are defined by means of a three-term recurrence relation whose coefficients may be unbounded but vary regularly and have a different behaviour for even and odd indices. Subclasses of systems of(More)
In the last few years several methods to obtain the moments around the origin of the density of zeros of orthogonal polynomials have been developed. One of them generates these moments starting from the explicit expression of the monic orthogonal polynomial. In this paper the corresponding algorithm is constructed in the " Mathematica " symbolic package(More)
  • 1