A. Yamazaki

Learn More
A mild, general, and functional group tolerant intramolecular hydroalkoxylation and hydroacyloxylation of unactivated olefins using a Co(salen) complex, an N-fluoropyridinium salt, and a disiloxane reagent is described. This reaction was carried out at room temperature and afforded five- and six-membered oxygen heterocyclic compounds, such as cyclic ethers(More)
The effect of Co(II) ion on the reaction of hydrogen peroxide with DNA was investigated by a DNA sequencing technique using 32P-5'-end-labeled DNA fragments obtained from human c-Ha-ras-1 protooncogene. Co(II) induced strong DNA cleavage in the presence of hydrogen peroxide even without alkali treatment. Guanine residues were the most alkali-labile site,(More)
Measurement of 99mTc-MAG3 plasma clearance (CLmag) based on one-compartment model (MPC method) was applied to renal transplantation and evaluated for the factors which might affect the calculated results, especially concerning renal depth. Correlation coefficient of CLmag between MPC method using real renal depth and Russell or Bubeck single sampling method(More)
4-Cyanamido-5-imidazolecarboxamide (IV) was prepared by brief treatment of 5-(S-methylisothiocarbamoyl) amino-4-imidazolecarboxamide (V) with alkali. Compound VI was converted in an alkaline solution to either guanine (VII) or isoguanine (VIII), depending on the concentration of alkali. This procedure was applied to the synthesis of(More)
We proposed a simple parameter, the kidney-to-aorta ratio (KAR), for evaluation of renal transplant perfusion. KAR was calculated from the peak counts of the kidney and the aorta. The calculated values were compared with the visual interpretation of the radionuclide first-pass flow study, percent renal uptake (%RU), and tubular extraction rate (TER) by(More)
A new cycloimidazole nucleoside, 5-(1 inch -benzamido-1 inch-hydroxymethylene) amino-2', 1 inch-anhydro-1-beta-D-ribofuranosyl-4-imidazolecarboxamide (III) was synthesized by reaction of 5-amino-1-beta-D-ribofuranosyl-4-imidazolecarboxamide (AICA-riboside) with benzoyl isothiocyanate followed by methylation with methyl iodide. The structure of III was(More)
Inosine was prepared (15% yield) by treatment of 5-amino-1-beta-D-ribofuranosyl-4-imidazolecarboxamide (AICA-riboside) with chloroform in the presence of sodium methoxide. This ring closure can be reasonably explained by assuming the formation of dichlorocarbene from chloroform and alkali. Carbon tetrachloride or hexachloroethane as a carbene source was(More)
  • 1