Learn More
BACKGROUND Delayed afterdepolarizations (DADs) carried by Na(+)-Ca(2+)-exchange current (I(NCX)) in response to sarcoplasmic reticulum (SR) Ca(2+) leak can promote atrial fibrillation (AF). The mechanisms leading to delayed afterdepolarizations in AF patients have not been defined. METHODS AND RESULTS Protein levels (Western blot), membrane currents and(More)
Diastolic waves of Ca(2+) release have been shown to activate delayed afterdepolarizations as well as some cardiac arrhythmias. The aim of this study was to investigate whether increasing ryanodine receptor open probability alone or in the presence of beta-adrenergic stimulation produces diastolic Ca release from the sarcoplasmic reticulum (SR). When(More)
1. Intracellular calcium concentration ([Ca2+]i) and Na(+)-Ca2+ exchange currents were measured in calcium-overloaded voltage-clamped rat ventricular myocytes loaded with the Ca(2+)-sensitive fluorescent indicator indo-1. Sarcoplasmic reticulum (SR) Ca2+ content was measured from the integral of the caffeine-evoked current. In cells that had spontaneous SR(More)
There is much evidence showing that some lethal ventricular arrhythmias arise from waves of Ca(2+) release from the sarcoplasmic reticulum (SR) that propagate along cardiac cells. The purpose of this review is to discuss the mechanism of production of these waves and how they depend on the properties of the SR Ca(2+) release channel or ryanodine receptor(More)
In this article we review the role of the Ryanodine Receptor (RyR) in cardiac inotropy and arrhythmogenesis. Most of the calcium that activates cardiac contraction comes from the sarcoplasmic reticulum (SR) from where it is released through the RyR. The amplitude of the systolic Ca transient depends steeply on the SR Ca content and it is therefore important(More)
1. The effects of modulating Ca2+-induced Ca2+ release (CICR) in single cardiac myocytes were investigated using low concentrations of caffeine (< 500 microM) in reduced external Ca2+ (0.5 mM). Caffeine produced a transient potentiation of systolic [Ca2+]i (to 800 % of control) which decayed back to control levels. 2. Caffeine decreased the steady-state(More)
The myocardial extracellular matrix (ECM), which preserves the geometry and integrity of the myocardium, is a dynamic structure whose component proteins are maintained by a finely controlled homeostatic balance between deposition and degradation. One of the key targets in cardiology is the elucidation of the molecular mechanisms which mediate pathological(More)
BACKGROUND In ventricular myocytes, the majority of structures that couple excitation to the systolic rise of Ca(2+) are located at the transverse tubular (t-tubule) membrane. In the failing ventricle, disorganization of t-tubules disrupts excitation contraction coupling. The t-tubule membrane is virtually absent in the atria of small mammals resulting in(More)
1. The aim of these experiments was to compare the time course of changes in intracellular Ca2+ concentration ([Ca2+]i) measured in the bulk cytoplasm with those estimated to occur near the sarcolemma. Sarcolemmal Na(+)-Ca2+ exchange current and [Ca2+]i were measured in single, voltage-clamped ventricular myocytes. 2. Spontaneous Ca2+ release from the(More)